
1

Overhead and Performance Study of the General
Internet Signaling Transport (GIST) Protocol

Xiaoming Fu,Member, IEEE, Henning Schulzrinne,Fellow, IEEE,
Hannes Tschofenig, Christian Dickmann, and Dieter Hogrefe, Member, IEEE

Abstract— The General Internet Signaling Transport (GIST)
protocol is currently being developed as the base protocol
component in the IETF Next Steps In Signaling (NSIS) protocol
stack to support a variety of signaling applications. In this paper
we present our study on the protocol overhead and performance
aspects of GIST. We quantify network-layer protocol overhead
and observe the effects of enhanced modularity and securityin
GIST. We developed a first open source GIST implementation
at the University of Göttingen, and study its performance in a
Linux testbed. A GIST node serving 45,000 signaling sessions is
found to consume average only 1.1ms for processing a signaling
message and 2.4KB of memory for managing a session. Individual
routines in the GIST code are instrumented to obtain a detailed
profile of their contributions to the overall system processing.
Important factors in determining performance, such as the
number of sessions, state management, refresh frequency, timer
management and signaling message size are further discussed. We
investigate several mechanisms to improve GIST performance so
as to be comparable with an RSVP implementation.

I. I NTRODUCTION

The Internet was designed to have simple packet forwarding
nodes and complex end systems (where various applications
are running over end-to-end protocols like TCP) [1]. However,
over the years these design principles have been challengedby
new application requirements and an evolving demand for the
infrastructure [2]–[4].

With the explosive growth of the Internet, there is an ever
increasing demand to provide configuration and maintenance
of flow-specific control state in the network (i.e., signaling
services) along the data path in IP-based networks. Examples
include resource reservation for Quality of Service (QoS)
provisioning and the configuration of various middleboxes
such as stateful packet firewalls and Network Address Trans-
lators (NATs) [5]. Although theResource ReSerVation Pro-
tocol (RSVP) [6], [7] has been developed, existing studies
on RSVP have tended to focus more on QoS reservation
models – initially IntServ [8], later DiffServ [9]) and their
performance [10], [11] – rather than the signaling services
they essentially provide. Apart from this, shortcomings inthe
RSVP design e.g., lack of a solid security framework and

X. Fu, C. Dickmann and D. Hogrefe are with the Institute for Informatics,
University of Göttingen, Germany, Email:{fu,cdickman,hogrefe}@cs.uni-
goettingen.de.

H. Schulzrinne is with the Department of Computer Science, Columbia
University, New York, USA, Email: hgs@cs.columbia.edu.

H. Tschofenig is with Nokia Siemens Networks and Universityof
Göttingen, Germany, Email: hannes.tschofenig@nsn.com.

Manuscript received on December 6, 2006 and revised on September 10,
2007. This is a revised version of [61].

mobility support have also played a role in contributing to
the limited market adoption. Approaches like RSVP refresh
overhead reduction extensions [12], BGRP [13], Yessir [14],
Boomerang [15], Beagle [16], MRSVP [17], Insignia [18]
or RSVP Mobility Support [19] investigate QoS signaling
with the goal to reduce overhead, improve performance, or
extend the signaling scheme to support mobility. These exten-
sions are based on the idea of discovering QoS-aware nodes
along the data path by using end-to-end addressed messages
(mostly equipped with a Router Alert option) that deliver
QoS parameters and rely on a flow identifier to identify a
signaling session state. In addition, protocol complexityhas
been an issue especially due to the support for multicast
flows [20]. These design principles have been a source of
limited flexibility, security and mobility. More importantly,
although these approaches individually may meet the needs of
certain signaling purposes, they lack an extensible framework
which allows easy extensions for future signaling applications.
Thus, in 2001 the IETF formed a new working group – Next
Steps in Signaling (NSIS) [21] – to investigate the architecture
and protocols for generic and application-specific signaling.
One pioneering work has been presented by Braden and
Lindell [22], who attempted to split RSVP into a two-layer
architecture allowing any type of signaling application rather
than being QoS centric.

Due to the shortcomings of RSVP and its current exten-
sions, we have presented an alternative extensible signaling
approach [23], [24] –Cross-Application Signaling Protocol,
or CASP – for ensuring modularity, flexibility and security
without changing the conventional path-coupled signaling
paradigm. There are three key ideas that underpin our proposed
approach: decoupling message transport from next signaling
hop discovery, reuse of existing transport and security proto-
cols, and the introduction of a location-independent session
identifier. This approach enables us to effectively support
generic IP signaling that can be used for various signaling
scenarios, with an enhanced protocol flexibility. The NSIS
working group reused many ideas from CASP and is standard-
izing a General Internet Signaling Transport (GIST)1 [25] as
the base protocol component of NSIS protocol stack to support
a variety of signaling applications.

In this paper, we study the protocol overhead and perfor-
mance aspects of GIST and compare with RSVP, the preceding
path-coupled signaling protocol. While some results are our

1The protocol described here was known as GIMPS (General Internet
Messaging Protocol for Signaling) until its final name was chosen in August
2005.



implementation specific, we believe the tests and results should
approximate some common behavior in other GIST implemen-
tations. The results confirm that GIST is meeting its major
design goals. Our experience has been that implementation
details are very important to achieve all of the benefits of
GIST.

The organization of the paper is as follows. Section II
provides a short introduction to GIST, Section III discusses the
results of a study which indicate that the additional overhead in
GIST are largely due to modularity and security. Furthermore,
it delineates the limitations of QoS-centric approaches in
providing generic signaling services. We then elaborate our
GIST performance study and implementation details in Section
IV. Section V concludes this paper.

II. A N INTRODUCTION TOGIST

A. NSIS: A Two-Layer Signaling Framework

In order to meet the requirements for an extensible, generic
signaling protocol, the design of the NSIS protocol suite sepa-
rates the transport functionalities (such as reliability,fragmen-
tation, congestion control and integrity) for signaling message
transport from signaling applications. Thus, following [22],
[23], signaling functions in NSIS are split into two protocol
layers [27]:

• An NSIS Transport Layer Protocol or NTLP, primarily
composed of a specializedmessaging layer, denoted as
GIST [25], which is used to transport thesignaling
application layer messages. The GIST layer is running
over standard transport and security protocols. Examples
of such protocols are UDP, TCP, SCTP and DCCP, with
or without IP security (IPsec) or Transport Layer Security
(TLS) mechanisms; in the current version, usage of UDP,
TCP, TLS over TCP [25] and SCTP [26] are specified.

• NSIS Signaling Layer Protocols or NSLPs, each run
signaling application-specific functionality. Examples of
NSLPs include the QoS NSLP for resource reservation
signaling [28] and the NAT/Firewall NSLP [29] for
middlebox configuration.

The different layers are depicted in Fig. 1.

B. GIST Overview

The GIST protocol, as described above, forms the funda-
mental building block of the NSIS protocol suite. The main
task of GIST is to deliver signaling messages for various
NSLPs between neighboring GIST nodes that support the same
NSLP. The NSLP itself is responsible for pushing the signaling
message from the NSIS Initiator (NI) towards the NSIS
Responder (NR), typically the flow source and destination,
respectively, as GIST just provides means to transport from
one node to the next on the path. The NI and NR can, however,
also be represented by proxies, e.g., to support end systems
that do not themselves have NSIS capabilities.

Instead of building a new transport protocol, GIST reuses
existing transport and security protocols to provide a universal
message transport service. Like RSVP, GIST is a soft-state
protocol. It creates and maintains two types of states related

 

GIST 
(General Internet Signaling Transport Protocol) 

 

Transport Layer Security 

IP 

IP Layer Security 

GIST 
API 

NSIS 

NTLP 

NSLP 

NAT/Firewall 
NSLP 

 QoS NSLP 
 

Metering NSLP 
 

UDP TCP SCTP DCCP 

Fig. 1. NSIS: a Two-layer Signaling Framework

to signaling transport: a per-session message routing state
(MRS) for managing the processing of outgoing messages,
and a message association (MA) state for managing the per-
peer state associated with connection mode messaging to a
particular peer (signaling destination address, protocoland
port numbers, internal protocol configuration and state infor-
mation). In addition to its neighboring GIST peer information,
GIST also maintains certain message routing information, such
as flow identifier (flow ID), NSLP type and session identifier
(session ID), to uniquely identify the signaling application
layer session for a flow.

GIST has two modes of operation: thedatagram mode (D-
mode), which uses an unreliable unsecured datagram transport
mechanism, with UDP as the initial choice; and theconnection
mode (C-mode), which uses any stream or message-oriented
transport protocol (currently TCP as the initial choice) and
may use IPsec security or TLS. It is possible to mix these
two modes along a chain of nodes, without coordination or
manual configuration. This allows, for example, the use of D-
mode at the edges of the network and C-mode in the core of
the network.

Let us have a look at a standard GIST operation using
an example (cf. Fig. 2), where A is QoS NSLP while B
is another type of NSLP. Assume a QoS NSLP RESERVE
message is generated by GIST at the NI (the flow sender).
The GIST module first constructs a GIST-query message,
namely a UDP datagram addressed to the flow destination and
includes an IP Router Alert Option [30] (similar to RSVP).
The next downstream NSIS peer which supports QoS NSLP
(R2) recognizes this message and replies to it with a GIST-
Response message. Upon the receipt of this response, the NI
creates a message association with R2, upon which allows
all subsequent GIST-Confirm or GIST-Data messages (i.e.,
GIST messages with NSLP payload) between these two peers
to be sent. Upon receipt of such GIST messages in R2,
NSLP payload and the flow ID are passed to its QoS NSLP
processing. Note it is the responsibility of the NSLP layer
to determine the action upon recept of a GIST message. If

2



the QoS NSLP in this node determines that it has enough
resources as requested by QoS NSLP RESERVE message, it
will make a tentative reservation for the session. The QoS
NSLP RESERVE message will continue to, via the GIST
layer, be delivered to the next QoS NSLP node in the path as
the same process described above. When the NR QoS NSLP
eventually receives the RESERVE message, it responds along
the reverse path towards the NI with a RESPONSE message
to finally confirm the establishment of the reservation. In this
example, the QoS NSLP payload (e.g., for signaling IntServ
would be primarily SenderTSpec and RSpec) is delivered,
examined and possibly modified in intermediate nodes, across
a chain of QoS NSLP aware nodes.

Non-NSIS 
nodeNSLP A

GIS T

NI R1

NSLP A

GIS T

R2

NSLP B

GIS T

R3

NSLP A

GIS T

NR

Fig. 2. An example of GIST operation

A GIST message consists of a common header and a
sequence of type-length-value (TLV) objects. The common
header indicates the message type (Query/Response/etc.),as
well as the NSLP ID and hop counter to avoid message loops.
In addition, GIST can use query- and response-cookies for
protection against spoofing and denial of service attacks

GIST-Query messages are retransmitted with exponential
backoff if a corresponding GIST-Response is not received on
time. Other NSLP messages encapsulated in D-mode are not
retransmitted; they rely on initial GIST-Query messages that
are eventually resent. Whenever possible, re-use of existing
reliable transport and security protocols is recommended via
the C-mode in GIST. This is necessary with larger data objects,
when a fast state setup in the face of packet loss is desirable,
or where channel security is required. A querying node (Q-
node) can choose to refresh the message routing state by
resending a GIST-Query. Local policy can determine whether
it is necessary to maintain an MA (e.g., a node may choose to
keep the MA open if there are sessions still in place, which
might generate messages that would use the MA). If no MA
exists between a Q-node and the responding node (R-node),
and the Q-node desires to run over C-mode, it will send a
Query with a stack proposal and stack configuration data to
negotiate (on the desired C-mode transport protocol, e.g.,TCP,
TCP+TLS) with the R-Node during the discovery phase (see
Fig. 3(a)); TCP three-way handshake is required to setup the
MA.

A detailed GIST protocol description can be found in [25]
and its corresponding state machine operations are described
in [31].

C. GIST Security

Security mechanisms for GIST try to provide the following
properties:

Query (D-mode)
Q-stackp + Q-stackcd

Response (D-mode)
R-stackp + R-stackcd

(Open server 
port)

(TCP SYN)

(TCP SYN+ACK)

(TCP ACK) 
Confirm (C-mode)

R-stackp

GIS T 
MA + 

MRS state 
setup TCP 

connection 
setup

Query
(D-mode)

Response
(D- or C-mode)

Confirm 
(D- or C-mode)

GIS T 
MRS state 

setup

a) C-mode MRS+MA setup b) D-mode or C-mode (MA exists) MRS setup

Q-node R-node R-nodeQ-node

Fig. 3. GIST session setup

1) Authentication of the two neighboring protocol peers;
2) Security association establishment to provide integrity,

confidentiality and replay protection for signaling mes-
sages exchanged between these entities;

3) Denial of service protection;
4) Some security protection for the discovery mechanism.
It is difficult to design a new security protocol to address

all these issues. Existing security protocols (such as TLS or
IKEv2/IPsec) already provide a number of these features, such
as properties 1), 2) and 3), but at the cost of considerable
setup latency. The establishment of a secure channel between
signaling peers to protect all signaling messages (which can
belong to any signaling session), is recommended. This in
turn limits the per-session security association setup cost in
C-mode.

Authorization at the GIST layer aims to ensure that a GIST
R-node only establishes communication with a legitimate
GIST Initiator. It is even more difficult to ensure that the GIST
Initiator sends signaling messages to the “right” GIST peer
(which supports a specific NSLP); this requires authorization
information to be provided along with the authentication
and key exchange process (e.g., as part of the authorization
certificate). These aspects are described in [32].

Relaxing assumptions regarding the desired protection
against man-in-the-middle adversaries might often be required
and desired. Furthermore, in most cases it is difficult for
GIST to make an authorization decision without consulting
the NSLP layer.

Channel Security

Q-node R-node

GIS T-Query 
(NSLP-ID/SID/MRI, Cookie(Q),...)

GIS T-Response
(Cookie(R), Cookie(Q),...)

(Authentication and Key Exchange)

GIS T - Confirm (Cookie(R))

Fig. 4. Protection of the GIST discovery procedure

In order to deal with adversaries that redirect signaling
messages, the cookie mechanism has been integrated into
the discovery exchange. This mechanism (see Fig. 4) can be
illustrated as follows. The cookies provided by the querying

3



and responding node (Cookie(Q) and Cookie(R)), e.g., 256-
bit cryptographically random nonces, are used to prevent DoS
attacks, similar to those used by other protocols (e.g., SCTP or
IKEv2). Cookie(Q) is included in the GIST-Response message
to prevent off-path adversaries from flooding the querying
node with bogus responses. The initiator uses this cookie to
match a request with a pending response. Once a security
association has been established, Cookie(R) is transmitted
from the querying node to the responding node. This allows
the responder to verify that it has actually participated inthe
discovery exchange, binding the discovery procedure to the
subsequent exchange. More details of authentication and key
exchange as well as possible cookie construction in Fig. 4 are
provided in the GIST specification.

III. PROTOCOL OVERHEAD

Every signaling protocol imposes some overhead in the form
of number and size of control messages, which is indicative of
the total bandwidth consumed by the signaling protocol and
must be processed in signaling-aware nodes. In this section
we discuss the sources and quantities of protocol overhead in
GIST as opposed to RSVP2. For convenience we consider
the primary signaling messages used for state setup and
maintenance: GIST-Query, Response, Confirm and GIST-Data
in comparison with RSVP-Path and RSVP-Resv; RSVP/GIST
Error, MAHello and RSVP PathTear/ResvTear messages are
omitted here for simplicity.

The detailed sources of overhead (including message and
memory overhead) in each of the layers of a GIST protocol
structure (based on the latest draft version of [25]) are given
in the Appendix, in comparison to RSVP. Table I summarizes
the overall message overhead for common message types.

With this information we are able to analyze the overhead
of the two signaling protocols, GIST and RSVP. On the one
hand, layering in GIST makes it possible to provide the general
functionalities required for signaling transport, namely,

• Error control: GIST makes the “channel” more reliable
(by reusing reliable transport protocols);

• Flow control: GIST avoids flooding slower peer by sig-
naling message flow control,

• Fragmentation: Dividing large data chunks into smaller
pieces, and subsequent reassembly (e.g., TCP MSS frag-
mentation/reassembly for large sizes of NSLP payload),

• Multiplexing: Allow multiple sessions to share a single
message association between adjacent peers,

• Connection setup: Handshaking with peer (e.g., by TCP
three-way handshake).

More importantly, GIST provides richer security support,
which makes it easier to support mobility and allows high
modularity to allow any signaling applications with a compa-
rable requirement for state repository.

On the other hand, layering and more functionality support
increase message and memory overhead. For example, if C-
mode is desired, there are at least two possibilities for GIST

2Note there are some small changes in this paper compared to the numbers
given in [61], to count for more fair and accurate comparisonfor QoS
signaling using GIST/NSIS and RSVP

session setup with minimal security support (i.e., only cookie
mechanism is used):

1) There is no TCP connection. This requires a
GIST-Query(with stack proposal)/(TCP-SYN/TCP-
SYNACK)/Response/Confirm process, which in turn
imposes 176+44+44+220+188=672 bytes message
overhead, in addition to the memory overhead for a
new TCB/TCBI state [56], [57], a new GIST message
routing state and a new GIST message association state.

2) Message association already exists. This requires a
GIST-Query(no stack proposal)/Response/Confirm pro-
cess, which imposes 144+188+188=520 bytes message
overhead, in addition to update of TCB/TCBI state and
a new GIST message routing state.

Thus, for signaling session setup, GIST C-mode requires 4
(or 3, when MA already exists; same applies below respec-
tively) messages, totally 672 (or 520) bytes overhead, for the
scenario where no TCP connection exists (or MA exists).

With GIST D-mode, no connection setup is required, but
three-way handshake in GIST layer is still needed, imposing
144+176+136=456 bytes message overhead, in addition to the
creation of per-session GIST MRS and update of per-peer
MA+TCP connection state.

With RSVP, on the other hand, in order to carry the
signaled data (SenderTSpec and Guaranteed/Controlled-Load
Service FlowSpec) of 12+48=60 bytes (Guaranteed Ser-
vice)/12+12=24 bytes (Controlled-Load Service), every ses-
sion setup requires a Path+Resv pair of 64+72=136 bytes
(IPv4)/184 bytes (IPv6) message overhead, in addition to
creating a new PSB and a new RSB.

For convenience we assume the QoS NSLP payload is the
same as RSVP, namely, SenderTSpec and FlowSpec. Per [28],
a minimal QoS NSLP header length for the basic messages to
deliver these payloads are: QoS NSLP RESERVE: 16 bytes
(QoS NSLP common header + RSN) and

QoS NSLP RESPONSE: 16 bytes (QoS NSLP common
header + INFOSPEC)

Overall, QoS NSLP layer adds at least 32 bytes more
overhead in addition to the overhead incurred by GIST.

According to this analysis, a comparison of overhead for
GIST (D-mode and C-mode, including with and without MA)
+ QoS NSLP and RSVP is given in Fig. 5. It can be noted
that most of the protocol overhead of GIST results from the
lower levels of the protocol stack during the session setup
phase, while in steady state (session refresh case), all modes
of GIST operation have no significant difference in terms of
overhead compared with RSVP. For instance, using the GIST
D-mode together with QoS NSLP which is closest to RSVP
operation, it incurs overhead of 488 bytes for session setup
case and 132 bytes for session refresh case (compared with
136 bytes in RSVP for both cases). The most heavy-weight
situation is when a GIST C-mode is desired but MA is not
yet established, GIST/QoS NSLP incurs 702 bytes for session
setup; when an MA already exists, the corresponding overhead
for session setup is 552 bytes, only slightly higher than D-
mode operation.

This comparison demonstrates that GIST’s rich functional-
ity, modularity, security, and mobility support is also accompa-

4



TABLE I

OVERHEAD BY PROTOCOL LAYER(IN BYTES)

Message type\Protocol layer IP layer Transport layer GIST layer Overall overhead
GIST-Query (no stack proposal) 24 (IPv4), 48 (IPv6) 8 112 (IPv4), 152 (IPv6) 144 (IPv4), 208 (IPv6)
GIST-Query (with stack proposal) 24 (IPv4), 48 (IPv6) 8 144 (IPv4), 184 (IPv6) 176 (IPv4), 240 (IPv6)
GIST-Response (D-mode) 20 (IPv4), 40 (IPv6) 8 148 (IPv4), 188 (IPv6) 176 (IPv4), 236 (IPv6)
GIST-Response (C-mode) 20 (IPv4), 40 (IPv6) 20 180 (IPv4), 184 (IPv6) 220 (IPv4), 244 (IPv6)
GIST-Confirm (D-mode) 20 (IPv4), 40 (IPv6) 8 108 (IPv4), 148 (IPv6) 136 (IPv4), 196 (IPv6)
GIST-Confirm (C-mode) 20 (IPv4), 40 (IPv6) 20 108 (IPv4), 148 (IPv6) 188 (IPv4), 208 (IPv6)
GIST-Data (D-mode) 20 (IPv4), 40 (IPv6) 8 72 (IPv4), 116 (IPv6) 100 (IPv4), 164 (IPv6)
GIST-Data (C-mode) 20 (IPv4), 40 (IPv6) 20 72 (IPv4), 116 (IPv6) 112 (IPv4), 176 (IPv6)
(TCP-SYN/SYN+ACK) 20 (IPv4), 40 (IPv6) 24 – 44 (IPv4), 64 (IPv6)
(TCP-ACK) 20 (IPv4), 40 (IPv6) 20 – 40 (IPv4), 60 (IPv6)
RSVP-Path 24 (IPv4), 48 (IPv6) 0 – 64 (IPv4), 112 (IPv6)
RSVP-Resv 20 (IPv4), 40 (IPv6) 0 – 72 (IPv4), 108 (IPv6)

Fig. 5. Overhead comparison of GIST and RSVP

nied by certain costs. Indeed, similar to other general-purpose
protocols, GIST does have its disadvantage of higher protocol
overhead in terms of large messages, more message exchanges,
additional parsing and processing. However, as we will con-
firm in Section IV-C, with some appropriate implementation
considerations and optimizations, it is possible to achieve a
signaling performance in terms of maximal number of sup-
ported sessions, CPU and memory consumption in steady state
comparable to existing RSVP implementations. Furthermore,
it should also be noted that in many scenarios signaling
application payloads are rather large (which can easily exceed
normal link MTU), e.g., certificates and active programming
packets, where the transport capability of GIST becomes of
greater use and the relative GIST protocol overhead becomes
much less. In addition, concepts of staged timers [12], [33]
and state compression [34] can also be considered.

IV. I MPLEMENTATION AND PERFORMANCEEVALUATION

In this section, we evaluate the quantitative performance
of a GIST implementation through benchmarks, and show its
performance is roughly comparable to KOM RSVP [11], and
scales well with the number of signaling sessions.

A. Implementation Overview

We have implemented the GIST protocol in C++, using
Linux 2.6 kernel. Our implementation is fully conformant
to the GIST protocol and its API (currently we support
draft version 14 [25]). We have developed a benchmarking

NSLP application (“Ping”) [35] for testing purposes. If not
otherwise mentioned, this document discusses our original
implementation released as version 0.1.0. It consists of about
6,900 lines of code in total, which comprises about 1,300 lines
for the core program, 2,000 lines for state machines, 700 lines
for state management, 1,400 lines for message parsing and
processing, and 1500 lines for the GIST-NSLP API. In addition
to the original version, this document covers an improved
version 0.5.2, which incorporates a new timer management,
as well as many new features the original prototype lacked.
The code is publicly available in [36].

The implementation architecture is shown in Fig. 6. It has
been developed based on a single process approach using a
main event loop based on XORP [37] library, which is used
to implement socket maintenance and callbacks as well as
timer callbacks. This design has no additional overhead for
maintaining and synchronizing multiple threads, which results
in a high throughput and a rather simple implementation.

Message routing state (MRS) Table

Flow #1 Sender FSM
Receiver FSM

Flow #3 Sender FSM
Receiver FSM

Flow #2 Sender FSM
Receiver FSM

Message asssociation (MA) Table

MA #1
UDP Socket

MA #2
TCP Socket

MA #3
TCP Socket

MA #4
TCP/TLS Socket

Event loop RAW Socket
Message Parser

Message <-> FSM
Distributor

GIS T-NSLP API

Fig. 6. Implementation Architecture

Besides the event loop, a key component in GIST im-
plementation is state management. In order to support tens
of thousands of signaling sessions efficiently, we used a
hash table to manage the MRSs, associated with linked lists
to resolve conflicts. A standard lookup takes constant time,
however in the worst case, all table entries would be compared
to find a given MRS.

5



To search the MRS table, one needs to know the associ-
ated key information, namely the session ID, the NSLP ID
and message routing information (MRI). This is nevertheless
subject to some limitations, e.g., it is not possible to search for
all MRSs using a specific MRI. Such a search feature may be
useful to find MRSs that are affected by a detected link failure.
A possible solution is to maintain specialized hash tables for
link failures, which would allow for quick searches. However,
this approach would add maintenance overhead to every MRS
table (which usually comprise a number of tables) operation.

In addition to managing MRSs, a GIST implementation has
to manage MAs for C-mode operations. If two peers already
have an MA and a new session is being established on the same
path, the MA should be reused to minimize resource usage.
This feature implies that there should be a way to search the
MA table for an MA that can be reused for a certain session.
Our implementation uses a second hash table to accomplish
that goal. The upstream peer information (PI) serves as the
key information. The UDP socket is treated as a “virtual” MA
for the convenience of unifying the socket interface module.

Another important component of the GIST implementation
is the finite state machine (FSM) to maintain states for each
session. We implemented the GIST FSMs [31] based on a
combination of the XORP timer class and an FSM frame-
work that was originally written for the Linux ISDN device
driver [38]. Every MRS is associated with two FSMs, one for
the upstream peer and another one for the downstream peer.
There is no need for a global table of FSMs, because every
MRS provides pointers to the associated FSMs. In addition,
every MA has a list of FSMs which it is associated with, so
that the state machines can be informed e.g., when a loss of
connectivity with its current peer takes place.

B. Testbed Setup and Tools

The performance experiments were carried out on 6 low-
end PCs running Linux 2.6.8.1. They are equipped with the
following hardware:

• Via Eden CPU 533 MHz
• 3 Realtek 100 Mbps NICs
• 256 MB SDRAM PC 133
• 20 GB HDD

Fig. 7 depicts how we connected the nodes for our experi-
ments.N1 and/orN2 was used as the sending host(s) – NI(s),
while N3, N4 or N5 were the flow destination(s) – NR(s).
In addition to the benchmarking tool “Ping”, we have also
developed an Ethereal GIST dissector [39] for monitoring the
GIST messages.

N1

N3

N5

N4

N2 N6

Fig. 7. Testbed Setup

The Ping tool is a light-weight NSLP protocol that sends
so-called Ping messages through a GIST aware network. The
traversed nodes insert a timestamp and information about the
local node (i.e., the IP address). When the message reaches
its destination host, it is redirected upstream and traverses the
network back to the original sender.

We use this tool in our experiments to model the scenario
of a real NSLP application without introducing unnecessary
overhead. Our main goal was to measure the maximal number
of sessions a backbone router can maintain. In addition, the
tool was intentionally designed to involve other aspects a real
NSLP application would likely require, including:

• GIST layer session lookup;
• GIST layer session refreshes;
• Communication between GIST and the NSLP layer;
• NSLP layer message processing.

In order to accomplish these goals, we disallow both main-
taining timers for the NSLP application and storing NSLP
layer state, but allow the sending node to send a Ping message
for each session every 30 seconds in order to simulate NSLP
behavior (this message can be regarded as a refresh message
in the NSLP layer). As a result, we were able to use this tool
to study the GIST performance and scalability. It is expected
that a real NSLP application would have additional overhead
(including timers, parsing and state management, all in NSLP
layer), resulting in some worse results in terms of round trip
times and maximal number of sessions that can be maintained
at a time.

A simple PHP script measures the CPU and memory
utilization every second using the proc-filesystem entries, in
the same fashion as the populartop program. After completing
the test, the script uses the debugging component of the GIST
implementation to fetch internal statistical informationlike the
average number of entries in the used hash table buckets.

To calculate the round trip times (RTTs), the information
contained in every Ping message is saved on the sender and
after the test is completed the collected timestamps are used
to calculate the round trip times. As the measurements were
conducted in lab environments without intervenience from the
background traffic, the standard deviations for the obtained
values were very small, for example less than 0.3ms for the
RTTs, thus the results are meant as the mean values.

C. Performance Study

1) Scalability in Number of Sessions: As signaling proto-
cols maintain and manage soft state in network nodes, the most
critical performance metric for GIST is the upper limit on the
number of sessions a GIST node can maintain. Additionally,
we would like to evaluate how the CPU load and memory
consumption scale with an increasing number of concurrent
sessions. Other parameters like average RTTs were collected
too. We performed three experiments for this test.

In the first experiment, we usedN1 as the NI andN3 as
the NR, and let the NI first established a configured number
of sessions and then emulated refreshes for all of them and
measured performance ofN3. The refresh intervals for NSLP
and GIST MRS were set 30 and 180 seconds, respectively.

6



The results are shown in Fig. 8-10. The first observation
is that the increase in CPU load and memory consumption is
nearly linear. With the original implementation, the consump-
tion of CPU time reached 70% (C-mode) – 71% (D-mode) of
the whole system when serving 60,000 sessions at a same time
in our test. Serving the same number of session, the improved
version 0.5.2 consumed 75% (D-mode) of overall CPU time.
While similar in overall performance, the new version is
slightly slower than the original one. The assumption that
optimizations in timer management and message composition
compensate for the increased complexity in message validation
and GIST logic is backed by the per-routing processing time
study presented later.

The second observation is that the RTTs were very small
(4.8-5.2ms) before the session number reached 50,000. It
increased to 56.2ms when serving 55,000 sessions, then in-
creased rapidly afterwards, reaching 7.0 seconds when serving
60,000 flows, indicating approaching the exhaustion of system
resources (memory/CPU/interface) in network nodes.

Fig. 8. Effect of concurrent sessions on CPU consumption

Fig. 9. Effect of concurrent sessions on memory consumption

In the next experiment, we studied the case where two
senders (N1 and N2), one intermediate node (N3), and one
receiver (N4) were involved. NSLP refresh interval was 30
seconds, and GIST refresh rate was 180 seconds. We let each
of senders serve 30,000 sessions, so receiver had to handle
60,000 sessions. The measured RTT turned out to be about
5.5ms. This confirms that the bottleneck for RTT in the tests
above is the sender and not the receiver.

Based on these observations, we obtain a rough estimation
of the upper limit of the supported session number in a GIST
node, which is at least 60,000. Note after the concurrent
session number of 45,000, the average RTT increases rapidly,
thus the effective session number that the system can support
is estimated as 45,000. This number may be improved by

Fig. 10. Effect of concurrent sessions on average RTT

introducing some optimizations, such as the ones suggested
in Section IV-E.

Another experiment we performed was to measure the
approximate processing time (i.e. the time difference from
incoming to outgoing message) required for a GIST message
in an intermediate node. Taking both theN1 and N2 as the
flow receiver and using ethereal dissector, we performed tests
for 20,000 and 60,000 simultaneous GIST sessions in steady
state, respectively.

In the light traffic cases (20,000 sessions), the results show
that the average processing time for GIST-Query and Response
messages was very small, about 0.25 ms, whereas a GIST-Data
(carrying Ping NSLP) message took the average processing
time of 1.1 ms. This conforms to the RTT results obtained in
Section IV-C.1.

In the second set (the more heavy-load traffic case), the
processing time for Query/Response increased to 0.9 ms,
whereas for a GIST-Data message it increased to 20 ms. This
confirms our observation in the first experiment, namely when
entering the heavy load traffic range, RTT is starting to be
much larger than the ligh traffic case.

We also did performance tests of a recent RSVP imple-
mentation, the KOM RSVP engine [11] in the same testbed
and PC hardwares. The results are also shown in Fig. 8-10
and we could conclude that we obtained roughly comparable
results. After fine tuning of the environment for running
KOM RSVP, we observed that KOM RSVP grows slower
for CPU consumption with session number increases: when
serving 60,000 simultaneous sessions, KOM RSVP just needed
about 20% of CPU time, in comparison with 70%. This
difference demonstrates certain properties of implementation-
specific design and the testing environment, for example: 1)
the use of XORP timer turned out to consume 50% of the
overall CPU usage in our GIST implementation, while the
fuzzy timer approach allowed KOM RSVP to manage timers
more efficiently [11], 2) in order to reach high signaling
loads, we did not change anything to the system environment,
while KOM RSVP was necessary to be deliberately tuned,
most likely due to a different development hardware/software
platform the KOM RSVP developers chose. On the other hand,
the required memory for KOM RSVP was found to be rather
similar to that for GIST: it was just 20% less than GIST C-
mode when both serving for 60,000 simultaneous sessions; for

7



small numbers of sessions (less than 15,000), it required even
more memory than our GIST implementation. This is due to
our introduction of optimizations (see Section IV-E).

Ideally, the memory consumption in different signaling
loads should be straight linear, but Fig. [?] shows that there
were some turbulence over the time. This is likely caused
by the indeterministic OS scheduling regarding the receipt,
queuing and delivery of each GIST/RSVP message, as both
KOM RSVP and GIST were implemented as user space
daemons.

2) Analysis of Session Setup Time: When GIST is used in a
real application (not just a Ping client), a critical metricis the
time required to finish the first signaling round trip (e.g., aQoS
reservation). This involves the GIST three-way handshake for
every hop-to-hop connection that is performed sequentially,
which could result in a rather long initial setup delay. Our
measurements show that this delay was between 3ms and 5ms
for D-mode or C-mode scenarios when an existing message
association can be reused. The number of sessions for this
measurement ranged between 15,000 to 25,000.

3) Impact of GIST Message Routing State Refreshes: The
main responsibility of GIST is to manage the MRSs and MAs
which are used in delivering NSLP messages from one peer
to another, where both states are soft states. We study the
effect of MRS state refreshes since MA state refreshes by
periodically GIST-Hello messages are not necessary if there
are some active signaling messages between the peer pair.

We chose 30 seconds as NSLP refresh interval and ran
tests under different refresh intervals for an overall number of
15,000 GIST sessions betweenN1 andN3, all links operating
on C-mode.

The measured CPU load inN3 are summarized in Table II.

TABLE II

IMPACT OF GIST MESSAGEROUTING STATE REFRESHINTERVAL ON

CPU LOAD

Refresh interval (sec) % of CPU load used by GIST
30 56%
60 47%
90 43%
120 42%
150 41%
180 40%
210 40%

This indicates a small refresh interval at GIST level only
introduces CPU load. Given the reliability properties of C-
mode, a relatively long refresh interval (e.g., 180 sec) at
GIST level for MRS maintenance which impose limited CPU
overhead should be enough, especially where route changes
are not frequently experienced.

We performed some more tests where all the 6 nodes in the
testbed were involved, and the results demonstrated similarly.
A stably low CPU load in intermediate nodes was observed
when the GIST MRS refresh interval was set about 180 sec
(also the reason why we selected this value as default refresh
interval in other tests).

4) Per-routine Processing Time: In order to study the
bottlenecks of the implementation, we performed profiling for

each individual routines in the GIST code, using thegprof
tool. Table III shows the profiling results for each routine’s
contributions to the overall system processing. It revealsthat
the XORP library consumes over half of the total running time,
mostly for managing XORP timer facilities. The reason is that
XORP uses a sorted heap to structure the timers – a more
detailed profile shows that maintaining this heap consumes up
to 38 percent of the overall runtime of our implementation.
This is due to the fact that, while adding and removing a heap
element imposes a time complexity ofO(log(n)), the heapify
algorithm costsO(n log(n)), wheren is the total number of
timers.

TABLE III

RUNTIME PROFILES OF THEIMPLEMENTATION

Code component % of total running time
v. 0.1.0 v. 0.5.2

1. XORP / Own implementation 53% 10%
1.1 Timer Management 42% 5%
1.2 Socket Management 10% 5%

2. Receiving incoming message 8% 30%
2.1 Receiving and distribution to FSM 4% 13%
2.2 Message parsing 4% 17%

3. Message composing and internal reading 17% 16%

4. Hash tables (MRS and MA) 8% 18%

5. Finite state maschine 7% 15%

6. NSLP level processing (ping) 1% 6%

7. Miscellaneous 6% 5%

Table III also confirms that version 0.5.2 is slower than the
original version due to additional overhead spent on validation
during message parsing, as well as more complexity in the
GIST state machine. These kinds of performance penalties are
a common phenomenon of maturing software, caused by more
and more corner cases being detected and handled properly.

5) C-mode versus D-mode: GIST is capable of operating
in both C-mode and D-mode. so that the difference in CPU
load between both modes of operation is of interest. We
implemented C-mode in both TCP and TLS/TCP but the
evaluation here focuses on using TCP as transport.

Fig. 8 shows the CPU load for a different number of
maintained sessions in C-mode and D-mode. From this figure
we can conclude that the CPU load does not make much
difference from each other.

Given that TCP offers a number of transport features desired
for signaling protocols, as outlined in Section III, the above
result suggests that C-mode should be used as much as
possible instead of D-mode for GIST message transport.

D. Bucket-based timer management

The results obtained during our initial performance study
clearly showed that the XORP timer management was a major
bottleneck in our implementation. Hence, we decided to switch
to a different, much more efficient mechanism. As already
discussed, XORP uses a heap to organize all active timers,
which requires to run the complex heapify algorithm for
each addition and removal of individual timers. While this
is reasonable for a diverse set of timers, it is very inefficient

8



in GIST, where many timers share the same structure: The
resolution of GIST timers is in seconds instead of milliseconds
and the firing interval for GIST timers is not diverse, i.e. many
flows are likely to share the same refreshing interval. Thus,
we decided to group timers based on the combination of two
properties: The interval and the starting offset. The offset is
defined asoffset = time since startup mod interval. For
example, a timer which is created 50 seconds after the start
of GIST and which is supposed to fire every 30 seconds,
will have an offset value of 20 seconds. Every interval/offset
combination corresponds to abucket which uses a linked-list
to store any number of timers.

The total number of buckets GIST has to manage is
drastically lower than number of timers. Imagine an optimal
case, where all intervals are the same. In our case we used
an interval of 180 seconds for GIST refreshes, which means
that there are no more than 180 buckets (i.e. one for every
possible offset). In order to insert a new timer, the matching
bucket needs to be found and the timer needs to be added
to the linked-list. To check which timers have to be fired,
the system needs to look at every bucket and check if
time since startup mod interval = offset holds. If the
condition holds, all timers contained in the bucket need to be
fired and otherwise the bucket is skipped. Execution of timers
is only done once per second, while adding new timers is
done many hundred times per second in heavy loaded GIST
nodes. Therefore, we decided to further optimize the lookup
of buckets matching a certain interval/offset combination. This
is done by organizing the buckets in a hash table. As we need
to walk through all buckets when firing timers, the hash table
should be densely populated to avoid checking hash values
which do not contain any bucket. Hence, we decided to use a
hash table size of 60. Using the example from above (refresh
interval of 180 seconds), we end up with approx. 3 buckets
per hash value.

Table III shows that our new timer management is much
more efficient for managing GIST refreshes than the general
purpose heap-based XORP timers. While XORP timers used to
consume over 40% of overall CPU time, the new timers con-
sume less than 10% CPU time in our most recent implemen-
tation. Please note, that the two measurements are not entirely
fair, as the new numbers are obtained with version 0.5.2 of our
implementation, while the XORP numbers where measured
with the original 0.1.0 release. As seen in Section IV-C.1, due
to increased complexity in GIST handling, the overall CPU
consumption of the 0.5.2 version is slightly higher compared
to the original one. Nevertheless, the performance gain due
to switching to the new bucket-based timer management is
significant.

E. Performance Optimizations

During the performance experiments we introduced several
optimization techniques and thus were able to significantly
reduce the CPU load of our implementation. The first op-
timization was to reduce data copying between processing
routines. When designing an object oriented implementation,
the tendency is to design every class with its own copy of the

data to ensure integrity. Network protocol implementations,
however, cannot afford to waste CPU and memory resources.
As a result, ideally there should be just one copy of every
incoming and outgoing packet and all code parts should use
pointers to the part they want to use. The zero-copy approach,
which was not yet fully implemented in our code, reduced
CPU load by about 20 percent.

Another performance bottleneck was found to be a poor
design of the implemented hash table – initially we used the
standard hash function, where 1 byte array as the hash key
and dense size in rehash turned out to be very computation
consuming. The hash function used now is still simple but
efficient: The key is treated as a 4-bytes array and the hash
value is the sum of the values in the array reduced modulo
the hash table size. Letk1, k2, . . ., kn be the values of the
integer array andp be the hash table size. Then the (current)
hash function is given by:

hash(k) = (k1 + k2 + . . . + kn) mod p

This results in a possible output range of values from 0 to
232

−1. The original hash function based on an array of 1 byte
values, in contrast, results in a very limited range of output
values, because all theki are just in the range of 0 to 255
and a typical number of bytes is 16, resulting the range of the
hash function was 0 to 4080. This means that a huge part of a
large hash table was never used and so the distribution along
the range was not uniform.

The hash table is rehashed with a higher hash table size
whenever the load factor exceeds a certain limit (i.e., 0.5).
The load factor is given by:

load factor =
stored elements

hash table size

Originally, the list of supported hash table size was dense,
which resulted in the need to rehash very often. The solution
was to rapidly increase hash table sizes exponentially (i.e. the
hash table size is more than doubled from one value to the
next) to quickly achieve the necessary size while minimizing
rehashing turns, which turned out very effective.

By optimizing the hash table, the average number of items
in one hash table bucket was reduced by one magnitude and
the overall GIST performance increased by approximately 20
percent.

The most important optimizations discussed above were
also accompanied by less significant changes. Some functions
were called several million times within a few minutes of
operation, which resulted in a large amount of overhead.
Using the inline statement to integrate the function body
directly into the calling code reduced this overhead and the
performance gain was up to 10 percent of overall performance.
In current implementation, some small code optimizations,
reducing readability but improving performance, were carried
out in frequently used code sections.

These optimizations cut CPU load by half by incorporating
the well-known principle of zero-copy and optimizing central
data structures and frequently used code parts. As already
mentioned in the above subsections, further optimizationsin

9



memory management and introduction of thread pooling ought
to contribute to more promising results.

V. RELATED WORK

Over the last decade, various issues for signaling in the
Internet, especially for QoS resource reservation, have been
widely investigated, They have ranged from soft state model-
ing [41], [42], scalability enhancements (e.g., by reservation
aggregation and more efficient refreshes) [13], [43]–[45],to
complexity [14]–[16], [20] and applicability [46]–[48]. Alot
of works have attempted to simplify or extend RSVP (even
under other protocol names). For example, today there are 44
RFCs with the word “RSVP” in their titles, while the index
of Internet drafts lists 16 documents with “RSVP” in their
titles. These works employed either a server-based or a router-
based approach. A server-based approach relies on centralized
entities (known as “bandwidth brokers”) to perform admission
control, while the router-based approach installs packet filters
either on a per-flow or aggregated basis in a hop-by-hop way.
Although there has been much focus on modularity for specific
QoS or multicast models (e.g., [49]), generic signaling support
has acquired little focus. Furthermore, the dominant way of
using the Router Alert Option and coupling discovery with
discovery have lead to a number of security and complexity
problems [20], [50]. Derived from RSVP concepts, the Label
Distribution Protocol (LDP) [60] was standardized by the IETF
for distributing MPLS labels (later for several other signaling
purposes), but it does not address the next signaling hop
discovery problem nor adequate security, leaving them for the
administrators’s concern.

Recently, several authors have addressed modular design,
using either an RSVP-based or a CASP-based approach. In
RSVP-based approaches, RSVP has been extended using an
extra reliable mechanism [47] and general signaling support.
This approach removes the QoS- and multicast-specific pro-
cessing burden from the original RSVP, and has the advantage
of better compatibility with existing protocol and implemen-
tations. Nonetheless, issues concerning security, congestion
control and fragmentation of signaling messages may be more
complex. No simple solution is available and RSVP still has to
deal with these issues, since RSVP encapsulates its messages
using raw IP or UDP, and couples PATH signaling with next-
hop discovery. Variations of the RSVP-based approach have
been described in [22], [51]. The latter proposal suggests a
decomposite system where a signaling message is just sent to
next CASP hop (discovered by some next-hop discovery mech-
anism) using an existing transport protocol which provides
capabilities such as fragmentation, congestion control, and
easier security when desired. Both proposals, however, leave
the actual mechanism undefined. The present GIST design
has followed many ideas of the CASP-based approach and
reuse RSVP concepts wherever possible [25]. Nonetheless,
the tradeoff between performance, security, complexity and
modularity is still an issue in both approaches. Fault recovery,
especially in dealing with re-routing [52] remains one major
concern in the layered architecture.

These studies have been accompanied by some works on
performance evaluation, in particular with RSVP. For example,

Chiueh et al. [10] reported an empirical study of RSVP,
which measured performance of a Cisco RSVP-capable router,
including RSVP control packet latencies (under loaded and un-
loaded cases) and throughput impact delivered for QoS objec-
tives. Panet al. [14], [33], [53] extensively studied processing
performance and scalability issues of RSVP and possible pro-
tocol improvements. Karstenet al. [11] implemented a user-
level RSVP protocol engine (which allows multi-threading
processing) in Linux C++, evaluated its performance to find
out the upper limits of the reservation requests and profiled
the system for different parts of protocol operations.

After we developed an open source CASP implementation
and evaluated its running properties [54], the present paper
elaborates the overhead study and performance results of the
evolved IETF GIST protocol through a detailed evaluation.
To our knowledge, the work presented in this paper is the first
empirical study of the GIST protocol.

VI. CONCLUSIONS

This paper presented the overhead, implementation and
performance study of GIST, a generic IP signaling protocol
being developed by the IETF. In contrast to traditional meth-
ods, GIST provides a modular architecture to support any
application application (NSLP) requesting signaling services,
and reduces complexity by relying on existing security and
transport protocols for achieving signaling functionalities. The
modularity design of the GIST implementation provides a
flexible way for state management, message processing, and
any type of application-specific signaling purposes. The result
is improved extensibility, security, and transport properties at
the cost of additional overhead. The implementation performed
efficiently when serving a number of sessions (at least 60,000)
and the profiling shows the detailed processing and round-
trip times for different numbers of signaling sessions. C-
mode is concluded to be preferred to D-mode due to its
richer functionality despite slightly higher overhead during the
session setup.

The focus of this paper has been on GIST properties,
such as protocol overhead, scalability and other performance
issues. Composing signaling application protocols (NSLPs)
and its effect on overhead and performance will certainly pose
imminent concerns once the overall system has materialized,
which will also effect its deployment. In addition, a numberof
issues were encountered when investigating the GIST protocol,
which went beyond the scope of this study. It is clear to
say that further study will be necessary with respect to a
more sophisticated network topology, as well as the interaction
with underlying transport and security protocols (effectsof
applying IPsec/TLS and different TCP variants in particular).
In addition, studies are being carried out on other issues
connected with GIST/NSIS, such as mobility support [25],
[55], fault handling and route change, as well as the QoS
and NAT/Firewall NSLPs under standardization [28], [29], and
a comprehensive performance evaluation of the whole NSIS
protocol stack in comparison with RSVP.

10



ACKNOWLEDGMENT

We would like to thank Bernd Schlör, Henning Peters and
Andreas Westermaier for their assistance in the implementa-
tion, as well as Elwyn Davies, Cedric Aoun, Tseno Tsenov,
Fabian Meyer and Sebastian Willert for their contributions. We
would also like to thank anonymous reviewers and members of
the IETF NSIS working group for the helpful comments, and
Martin Karsten for sharing his experience and kind support in
configuring and tuning KOM-RSVP.

REFERENCES

[1] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,”
in Proc. of SIGCOMM 1988, Stanford, CA, Aug. 1988.

[2] R. Braden, D. D. Clark, and S. Shenker, “Integrated services in
the Internet architecture: an overview,” Internet Engineering Task
Force, RFC 1633, June 1994. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc1633.txt

[3] B. E. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,”
Internet Engineering Task Force, RFC 3234, Feb. 2002. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3234.txt

[4] M. Blumenthal and D. Clark, “Rethinking the design of theInternet:
The end to end arguments vs. the brave new world,”ACM Transactions
on Internet Technology, vol. 1, no. 1, pp. 70–109, Aug. 2001.

[5] J. Kempf and R. Austein, “The Rise of the Middle and the Future of
End-to-End: Reflections on the Evolution of the Internet Architecture,”
Internet Engineering Task Force, RFC 3724, Mar. 2004. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3724.txt

[6] L. Zhang, S. Deering, D. Estrin, S. Shen, and D. Zappala, “RSVP: A
New Resource ReSerVation Protocol,”IEEE Network, vol. 7, no. 5, pp.
8–18, Sept. 1993.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Re-
source ReSerVation Protocol (RSVP) – Version 1 Functional Speci-
fication,” RFC 2205, Sept. 1997. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2205.txt

[8] J. Wroclawski, “The use of RSVP with IETF integrated services,” Sept.
1997. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2210.txt

[9] S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “An architecture for differentiated service,” Internet
Engineering Task Force, RFC 2475, Dec. 1998. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2475.txt

[10] T. Chiueh, A. Neogi, and P. Stirpe, “Performance Analysis of an RSVP-
Capable Router,” inProc of IEEE RTAS, 1998, pp. 39–48.

[11] M. Karsten, J. Schmitt, and R. Steinmetz, “Implementation and Evalu-
ation of the KOM RSVP Engine,” inProc of IEEE INFOCOM, 2001,
pp. 1290–1299.

[12] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and S. Molendini,
“RSVP refresh overhead reduction extensions,” RFC 2961, Apr. 2001.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2961.txt

[13] P. Pan, E. Hahne, and H. Schulzrinne, “BGRP: A Tree-Based Aggre-
gation Protocol for Inter-domain Reservations,”Journal of Communica-
tions and Networks, vol. 2, no. 2, pp. 157–167, June 2000.

[14] P. Pan and H. Schulzrinne, “YESSIR: A Simple Reservation Mechanism
for the Internet,” inProc of ACM NOSSDAV, 1998.

[15] G. Feher, K. Nemeth, M. Maliosz, I. Cselenyi, J. Bergkvist, D. Ahlard,
and T. Engborg, “Boomerang – A Simple Protocol for Resource Reser-
vation in IP Networks,” inProc of IEEE RTAS, 1999.

[16] P. Chandra, A. Fisher, and P. Steenkiste, “A Signaling Protocol for
Structured Resource Allocation,” inProc of IEEE INFOCOM, New
York, Mar. 1999.

[17] A. Talukdar, B. Badrinath, and A. Acharya, “MRSVP: a Resource
Reservation Protocol for an Integrated Services Network with Mobile
Hosts,” Wireless Networks, 7(1): 5–19, 2001.

[18] S. Lee, A. Gahng-Seop, X. Zhang, and A. Campbell, “INSIGNIA: An
IP-Based Quality of Service Framework for Mobile Ad Hoc Networks,”
Journal of Parallel and Distributed Computing, Special issue on Wireless
and Mobile Computing and Communications, 60(4): 374–406, 2000.

[19] W.-T. Chen and L.-C. Huang, “RSVP Mobility Support: A Signaling
Protocol for Integrated Services Internet with Mobile Hosts,” in Proc of
IEEE INFOCOM 2000, Tel-Aviv, Israel, Mar. 2000.

[20] J. Manner and X. Fu, “Analysis of Existing Quality-of-Service Signaling
Protocols,” Internet Engineering Task Force, RFC 4094, May2005.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4094.txt

[21] The IETF Next Steps in Signaling (NSIS) Working Group. [Online].
Available: http://www.ietf.org/html.charters/nsis-charter.html

[22] B. Braden and B. Lindell, “A Two-Level Architecture forInternet
Signaling,” Internet draft (draft-braden-2level-signaling-01), work in
progress, Oct. 2002.

[23] H. Schulzrinne, H. Tschofenig, X. Fu, and A. McDonald, “CASP –
Cross-Application Signaling Protocol,” Internet draft (draft-schulzrinne-
nsis-casp-01), work in progress, Mar. 2003.

[24] X. Fu, H. Tschofenig, and D. Hogrefe, “Beyond QoS Signaling: a
Generic IP Signaling Framework,” Computer Networks, 50(17): 3416-
3433, Dec. 2006.

[25] H. Schulzrinne and R. Hancock, “GIST: General InternetSignaling
Transport,” Internet draft (draft-ietf-nsis-ntlp-14), work in progress, July
2007.

[26] X. Fu, C. Dickmann, and J. Crowcroft, “General InternetSignaling
Transport (GIST) over SCTP,” Internet draft (draft-ietf-nsis-ntlp-sctp-
01), work in progress, Mar. 2007.

[27] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch,
“Next Steps in Signaling (NSIS): Framework,” Internet Engineering Task
Force, RFC 4080, June 2005.

[28] J. Manner, G. Karagiannis, and A. McDonald, “NSLP for Quality-of-
Service signaling,” Internet draft (draft-ietf-nsis-qos-nslp-15), work in
progress, July 2007.

[29] M. Stiemerling, H. Tschofenig, C. Aoun, and E. Davies, “NAT/Firewall
NSIS Signaling Layer Protocol (NSLP),” Internet draft (draft-ietf-nsis-
nslp-natfw-15), work in progress, July 2007.

[30] D. D. Katz, “IP Router Alert Option,” Internet Engineering Task
Force, RFC 2113, Feb. 1997. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2113.txt

[31] T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, and E. Davies, “GIST State
Machine,” Internet draft (draft-ietf-nsis-ntlp-statemachine-04), work in
progress, July 2007.

[32] C. Aoun, E. Davies, and H. Tschofenig, “Securing Middlebox
Discovery for Path-Directed Signaling in the Internet,” inIEEE ASWN
2005 Workshop Proceedings, July 2005.

[33] P. Pan and H. Schulzrinne, “Staged Refresh Timers for RSVP,” Global
Internet 1997.

[34] L. Wang, A. Terzis, and L. Zhang, “A New Proposal for RSVP
Refreshes,” inProc of IEEE ICNP, Washington DC, 1999.

[35] C. Dickmann, I. Juchem, S. Willert, and X. Fu, “A stateless Ping tool
for simple tests of GIST implementations,” Internet draft (draft-juchem-
nsis-ping-tool-02), work in progress, July 2005.

[36] NSIS Implementation. http://user.informatik.uni-goettingen.de/∼nsis
[37] The eXtensible Open Router Platform (XORP). [Online].Available:

http://www.xorp.org/
[38] P. Marques, “Kernel ISDN subsystem and device drivers.” [On-

line]. Available: http://kernel.org/pub/linux/kernel/people/marcelo/linux-
2.4/drivers/isdn/

[39] Ethereal Dissector for GIST. [Online]. Available:
http://user.informatik.uni-goettingen.de/∼nsis/release/ndiss/

[40] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facil-
ity”, in Operating Systems Review, Special Issue: Proceedings of the
Eleventh Symposium on Operating Systems Principles, Austin, TX,
USA, 21(5):25-38, Nov. 1987

[41] S. Raman and S. McCanne, “A model, analysis, and protocol framework
for soft state-based communication,” inProc. of SIGCOMM 1999.

[42] P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A Comparison of Hard-state and
Soft-state Signaling Protocols,” inProc. of SIGCOMM 2003, Karlsruhe,
Germany, Aug. 2003.

[43] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
and B. S. Davie, “A framework for integrated services operation over
diffserv networks,” Internet Engineering Task Force, RFC 2998, Nov.
2000. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2998.txt

[44] F. Baker, C. Iturralde, F. L. Faucheur, and B. Davie, “Aggregation
of RSVP for IPv4 and IPv6 reservations,” Internet Engineering Task
Force, RFC 3175, Sept. 2001. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3175.txt

[45] Z.-L. Zhang, Z. Duan, and Y. H. Hou, “Decoupling QoS Control from
Core Routers: A Novel Bandwidth Broker Architecture for Scalable
Support of Guaranteed Services,” inProc. of ACM SIGCOMM, 2000.

[46] A. Mankin, F. Baker, B. Braden, S. Bradner, M. O‘Dell, A.Romanow,
A. Weinrib, and L. Zhang, “Resource ReSerVation protocol (RSVP)
– version 1 applicability statement some guidelines on deployment,”
Internet Engineering Task Force, RFC 2208, Sept. 1997. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2208.txt

11



[47] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow,
“RSVP-TE: extensions to RSVP for LSP tunnels,” Dec. 2001. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3209.txt

[48] A. Terzis, J. Krawczyk, J. Wroclawski, and L. Zhang, “RSVP op-
eration over IP tunnels,” RFC 2746, Jan. 2000. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2746.txt

[49] D. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “An architectural
comparison of ST-II and RSVP,” inProc. of IEEE INFOCOM, 1994.

[50] T.-L. Wu, S. F. Wu, Z. Fu, H. Huang, and F.-M. Gong, “Securing
QoS: Threats to RSVP messages and their countermeasures,” in Proc.
of IWQoS, 1999.

[51] M. Shore, “The NSIS Transport Layer Protocol (NTLP),” Internet draft
(draft-shore-ntlp-00), work in progress, May 2003.

[52] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure insensitive
routing for ensuring service availability,” inProc. of IWQoS, 2003.

[53] P. Pan and H. Schulzrinne, “Processing Overhead Studies in Resource
Reservation Protocols,” ITC 2001.

[54] X. Fu, D. Hogrefe, and S. Willert, “Implementation and Evaluation of
the Cross-Application Signaling Protocol (CASP),” inProc. of IEEE
ICNP, Oct. 2004.

[55] T. Sanda, X. Fu, S. Jeong, J. Manner, and H. Tschofenig, “Applicability
Statement of NSIS Protocols in Mobile Environments,” Internet draft
(draft-ietf-nsis-applicability-mobility-signaling-07), work in progress,
July 2007.

[56] J. B. Postel, “Transmission Control Protocol,” Internet Engineering
Task Force, RFC 793, Sept. 1981. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc793.txt

[57] J. Touch, “TCP control block interdependence,” Internet Engineering
Task Force, RFC 2140, Apr. 1997. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2140.txt

[58] H. Balakrishnan and S. Seshan, “The Congestion Manager,” Internet
Engineering Task Force, RFC 3124, June 2001. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3124.txt

[59] R. Braden and L. Zhang, “Resource ReSerVation Protocol(RSVP)
– Version 1 Message Processing Rules,” Internet Engineering Task
Force, RFC 2209, Sept. 1997. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2209.txt

[60] L. Andersson, P. Doolan, N. Feldman, A. Fredette and B. Thomas,
“LDP Specification,” Internet Engineering Task Force, RFC 3036, Jan.
2001. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3036.txt

[61] X. Fu, H. Schulzrinne, H. Tschofenig, C. Dickmann and D.Hogrefe,
“Overhead and Performance Study of the General Internet Signaling
Transport (GIST) Protocol,” inProc. of IEEE INFOCOM, 2006.

APPENDIX – SOURCES OFPROTOCOL OVERHEAD IN GIST
(IN COMPARISON WITH RSVP

Here we give the details on how each of the layers of
GIST and RSVP protocol structures contributes to their overall
protocol overhead.

1) IP: Both RSVP and GIST messages need an IPv4 or
IPv6 header, which is 20 bytes or 40 bytes without options,
routing, fragmentation and security headers. For GIST-Query
and RSVP-Path messages, the IP layer requires additional 4
bytes (for IPv4) or 8 bytes (for IPv6) in order to accommodate
the IP Router Alert Option.

2) Transport Layer: GIST-Query messages are encapsu-
lated using UDP, thus the transport layer overhead is 8 bytes.
Other GIST messages can use either D-mode (UDP) or C-
mode (TCP by default), resulting in a default transport layer
overhead of 8 bytes (UDP header) or 20 bytes (a minimal
TCP header). Note that C-mode messages in GIST require
additional transport layer messages to accomplish the trans-
port functionality, such as connection setup and reliability.
Under normal circumstances (e.g., no loss, non-congested,no
fragmentation), a TCP connection setup requires an additional
TCP SYN, a SYN+ACK message and a TCP ACK message,
whereas each GIST-layer message exchange needs an underly-
ing TCP ACK message. SYN or SYN+ACK messages carry an

MSS option (4 bytes) in addition to the normal TCP header,
thus their overall overhead is 24 bytes plus IP header. The
overhead of TCP ACK is 20 bytes plus IP header.

By default, RSVP messages are encapsulated directly using
IP, so normally there is no transport layer overhead in RSVP.
(Note the use of UDP for RSVP signaling is not discussed
here.)

3) GIST: The GIST layer overhead can differ from one
GIST message type to another, from one NSLP to another. It
also relies on the used lengths of query-cookie and response-
cookie as well as peer identity (PI, part of the NLI – the net-
work layer information) and message routing method (MRM,
used for managing message routing state) [25]. In our work
we choose 36 bytes as the length for both query-cookie and
response-cookie objects. We use the peer’s IP address as the
PI, thus a PI object length is 8 bytes (for IPv4) or 20 bytes
(for IPv6). Among the optional fields of a basic path-coupled
MRM, we choose to use only destination port (2 byte) for IPv4
and only flow label (3 bytes) for IPv6, which is suggested for
usage by some other protocols as well, e.g., [7], [23]. All the
mandatory fields are used in below discussions.

GIST-Query message comprises a common header (8 bytes),
an MRM object (24 bytes for IPv4, 52 bytes for IPv6), a
session ID object (20 bytes), a query-cookie object (36 bytes)
and a network layer information object (24 bytes for IPv4, 36
for IPv6). For a node desiring C-mode operation, the Querying
node’s stack proposal object (12 bytes) and stack configuration
data object (20 bytes) are also added. Therefore, the overall
GIST layer overhead of a GIST-Query message is as follows:

8 + 24 + 20 + 36 + 24(+12 + 20) = 112(+32, if stack
proposal exists) bytes for IPv4, and

8 + 52 + 20 + 36 + 36(+12 + 20) = 152(+32, if stack
proposal exists) bytes for IPv6.

A GIST-Response message echos the query cookie and
stack proposal objects, and additionally adds a response cookie
object (36 bytes) to the received query message. Thus, the
overall GIST layer overhead of a GIST-Response (C-mode) is
148 (+32 with stack proposal) bytes for IPv4 and 188 (+32
with stack proposal) bytes for IPv6.

A GIST-Confirm message differs from a GIST-Query in that
it contains a response cookie object instead of a query cookie
object (but of the same length), and removes the attached stack
configuration data, besides the NSLP payload. Therefore, the
overall GIST layer overhead of a GIST-Confirm is the same
as Query.

A GIST-Data message comprises a common header, MRM,
session ID and network layer information objects, excluding
NSLP payload. GIST-Data message overhead is then as fol-
lows:

8 + 24 + 20 + 20 = 72 bytes for IPv4, and
8 + 52 + 20 + 36 = 116 bytes for IPv6.
4) RSVP: A minimal RSVP-Path message contains the

IP layer (with overhead of 24 bytes for IPv4, 48 bytes for
IPv6 including router alert option), common RSVP header
(8 bytes), a session object (12 bytes for IPv4 and 24 bytes
for IPv6), TIME Values object (8 bytes) and a RSVPHOP
object (12 bytes for IPv4, 24 bytes for IPv6), in addition to
the actually signaled data, namely the SENDERTSpec (12

12



bytes [8]). Therefore, a minimal RSVP-Path message requires
the following overhead for carry signaled data of 12 bytes:

24 + 8 + 12 + 12 + 8 = 64 bytes for IPv4, and
48 + 8 + 24 + 24 + 8 = 112 bytes for IPv6.
A minimal RSVP-Resv message for FF style (i.e., unicast)

contains the IP header, common RSVP header, a session
object, a RSVPHOP object, a STYLE object (8 bytes), and
a Filter Spec object (of 12 bytes length for IPv4, or of 24
bytes length for IPv6), in addition to the embedded signaling
data, i.e., a FlowSpec object (of 48 bytes length for GS,
the Guaranteed Service, or of 12 bytes length for CLS, the
Controlled Load Service [8]). This indicates that a minimal
unicast RSVP-Resv message imposes the following overhead
for carrying signaled data of 48 bytes (GS) or 12 bytes (CLS):

20 + 8 + 12 + 12 + 8 + 12 = 72 bytes for IPv4, and
20 + 8 + 24 + 24 + 8 + 24 = 108 bytes for IPv6.
5) Memory Consumption: Different from stateless proto-

cols (e.g., IP and UDP), TCP, GIST layer and RSVP layer
introduces memory requirements to store their layer-specific
states, besides their protocol engine repository. As the exact
presentation of these states is not part of the standards and
may differ from one implementation/computer architectureto
another, we estimate them below and validate them in the
evaluation (see Section IV-C).

In the TCP layer, each TCP connection maintains a data
structure for its state (TCP Control Block or TCB) [56], which
includes a combination of parameters, such as connection
state, current round-trip time estimates, congestion control
information, and process information. A TCB connection state
can vary in size between 256 bytes or less and more than
1 kilobytes. In GIST, TCP connections are recommended to
be shared across signaling sessions between the same GIST
pairs, where TCP Control Block Interdependence (TCBI) [57]
or Congestion Manager [58] may be used in order to reduce
connection state size, e.g., up to 512 bytes. Use of such mul-
tiplexing techniques allows a rather low memory consumption
for per-peer GIST state management.

The GIST layer in D-mode maintains a per-session state,
namely the message routing state. A minimum MRS state
entry contains MRI (e.g., 1-byte method identifier for “path-
coupled”, and 10-byte 5-tuple flow ID for IPv4 or 35-bytes
3-tuple flow ID for IPv6 comprising flow label, flow sender’s
address, flow receiver’s address), 16-byte session ID, 1-byte
NSLP ID, response direction (e.g., flow sender’s address, 4
bytes for IPv4 and 16 bytes for IPv6) and query direction (e.g.,
flow receiver’s address). This indicates that such an MRS entry
is 36 bytes (IPv4) or 85 bytes (IPv6) in size, in addition to a
validity timer.

In addition to the per-session state MRS (same as in D-
mode), GIST layer in C-mode also maintains a per-peer state
MA, which includes the GIST messages pending transmission
(the number can be zero) and MA active timer, which is rather
small in size when serving for a number of MRS sessions.

In contrast, each RSVP node maintains a per-session Path
State Block (PSB) and a Resv State Block (RSB) [59], each
with a validity timer and refresh interval. A minimum PSB
includes information about session (8 bytes for IPv4 and 20
bytes for IPv6), SenderTemplate (8 bytes for IPv4 and 20

bytes for IPv6), SenderTspec (12 bytes), previous hop’s IP
address (4 bytes for IPv4, 16 bytes for IPv6) and logical
interface handle (4 bytes), remaining IP TTL (1 byte), and
several flags (assuming 1 byte), in total 38 bytes for IPv4
and 74 bytes for IPv6. A minimum RSB includes session (8
bytes for IPv4 and 20 bytes for IPv6), next hop IP address,
Filter Spec (12 bytes for IPv4 and 24 bytes for IPv6), style (4
bytes), and FlowSpec (36 bytes for CLS), in total 64 bytes
for IPv4 and 90 bytes for IPv6. This represents 82 bytes
for IPv4 and 164 bytes for IPv6 in overall RSB and PSB
excluding management overhead and timers. This conclusion
(i.e., slightly higher than GIST memory consumption) does
not appear surprising, since unlike GIST states, RSVP states
also include IntServ parameters.

Xiaoming Fu is currently Professor and Head of Computer Networks Group at
the University of Göttingen, Germany. He received his Ph.D. Degree in Com-
puter Science from the Tsinghua University, China in 2000. He was member
of research staff at Technical University Berlin, before hejoined the University
of Göttingen as an Assistant Professor in 2002. His research interests include
network architectures, protocols, mobile communicationsand service overlays.
In these areas he has contributed to EU-funded projects ENABLE, Daidalos-
II, MING-T, and VIDIOS etc. He has served as TPC member/session chair for
various networking conferences such as INFOCOM/ICNP/ICDCS/CCW, and
TPC co-chair of the ACM International Workshop on Mobility in the Evolving
Internet Architecture (MobiArch) 2006-2007. Email: fu@cs.uni-goettingen.de

Henning Schulzrinne received his Ph.D. from the University of Mas-
sachusetts in Amherst, Massachusetts. He was a member of technical staff
at AT&T Bell Laboratories, Murray Hill and an associate department head
at GMD-Fokus (Berlin), before joining the Computer Scienceand Electrical
Engineering departments at Columbia University, New York.He is currently
Professor and Chair of the Department of Computer Science. Protocols co-
developed by him, such as RTP, RTSP and SIP, are now Internet standards,
used by almost all Internet telephony and multimedia applications. His
research interests include Internet multimedia systems, ubiquitous computing,
mobile systems, quality of service, and performance evaluation. He is a Fellow
of the IEEE. Email: hgs@cs.columbia.edu

Hannes Tschofenig received his Diploma degree from the University of
Klagenfurt, Austria. He joined Siemens Corporate Technology in 2001 and is
currently a senior research scientist at Nokia Siemens Networks and part-
time researcher at the University of Göttingen. His research interests lie
on network architectures, protocols, applications and related security issues.
He is currently co-chair of the IETF Emergency Context Resolution with
Internet Technologies (ECRIT) working group and Diameter Maintenance
and Extensions (DIME) working group, as well as Secretary ofthe Next
Steps in Signaling (NSIS) working group. He is a co-author ofseveral
standard track RFCs and Internet drafts. He has contributedto EU funded
projects, such as SHAMAN, Ambient Networks and ENABLE. Email:
hannes.tschofenig@nsn.com

Christian Dickmann received his bachelor’s degree (with honors) in Com-
puter Science in 2005 and is working towards his master’s degree at the
University of Göttingen. He was an intern at BMW Car IT and Siemens AG.
In 2007, he was a visiting research scholar at Columbia University, New York.
Email: cdickman@cs.uni-goettingen.de

13



Dieter Hogrefe received his Diploma degree and Ph.D. from the University
of Hannover, Germany. His research activities are directedtowards Computer
Networks and Protocol Engineering. In these fields he has published several
books and numerous papers on Internet technology, analysis, simulation and
testing of formally specified communication systems. Afteryears of research
positions in Siemens, he held professorships at the Universities of Dortmund,
Berne and Luebeck. Since 2002 he is Professor for Telematicsat the Uni-
versity of Göttingen. Prof. Hogrefe represents the IITB (Fraunhofer Institute
for Information and Data Processing) in the European Telecommunication
Standards Institute, ETSI, where he is chairman of the Technical Committee
Methods for Testing and Specification. Email: hogrefe@cs.uni-goettingen.de

14


