Overhead and Performance Study of the General
Internet Signaling Transport (GIST) Protocol

Xiaoming Fu,Member, IEEE, Henning Schulzrinnefellow, 1EEE,
Hannes Tschofenig, Christian Dickmann, and Dieter Hogretiember, |IEEE

Abstract— The General Internet Signaling Transport (GIST)
protocol is currently being developed as the base protocol
component in the IETF Next Steps In Signaling (NSIS) protocb
stack to support a variety of signaling applications. In this paper
we present our study on the protocol overhead and performane
aspects of GIST. We quantify network-layer protocol overhad
and observe the effects of enhanced modularity and securitin
GIST. We developed a first open source GIST implementation
at the University of Gottingen, and study its performance in a
Linux testbed. A GIST node serving 45,000 signaling sessisris
found to consume average only 1.1ms for processing a sigradj
message and 2.4KB of memory for managing a session. Individu
routines in the GIST code are instrumented to obtain a detaiéd
profile of their contributions to the overall system procesig.
Important factors in determining performance, such as the
number of sessions, state management, refresh frequencymer
management and signaling message size are further discudséVe
investigate several mechanisms to improve GIST performareso
as to be comparable with an RSVP implementation.

I. INTRODUCTION

mobility support have also played a role in contributing to
the limited market adoption. Approaches like RSVP refresh
overhead reduction extensions [12], BGRP [13], Yessir ,[14]
Boomerang [15], Beagle [16], MRSVP [17], Insignia [18]
or RSVP Mobility Support [19] investigate QoS signaling
with the goal to reduce overhead, improve performance, or
extend the signaling scheme to support mobility. Thesenexte
sions are based on the idea of discovering QoS-aware nodes
along the data path by using end-to-end addressed messages
(mostly equipped with a Router Alert option) that deliver
QoS parameters and rely on a flow identifier to identify a
signaling session state. In addition, protocol complekiag
been an issue especially due to the support for multicast
flows [20]. These design principles have been a source of
limited flexibility, security and mobility. More importalyt
although these approaches individually may meet the nefeds o
certain signaling purposes, they lack an extensible fraonlew
which allows easy extensions for future signaling appiaces.
Thus, in 2001 the IETF formed a new working group — Next

The Internet was designed to have simple packet forwardigéePs in Signaling (NSIS) [21] - to investigate the architez
nodes and complex end systems (where various applicati@hél protocols for generic and application-specific sigrali
are running over end-to-end protocols like TCP) [1]. HoweveOne pioneering work has been presented by Braden and
over the years these design principles have been challdnged-indell [22], who attempted to split RSVP into a two-layer
new application requirements and an evolving demand for tREchitecture allowing any type of signaling applicatiothes

infrastructure [2]-[4].

than being QoS centric.

With the explosive growth of the Internet, there is an ever Pue to the shortcomings of RSVP and its current exten-

increasing demand to provide configuration and maintenar®/@ns, we have presented an alternative extensible signali
of flow-specific control state in the network (i.e., signglin@PProach [23], [24] -Cross-Application Signaling Protocol,

services) along the data path in IP-based networks. Examg#é

CASP — for ensuring modularity, flexibility and security

include resource reservation for Quality of Service (Qodjithout changing the conventional path-coupled signaling
provisioning and the configuration of various middleboxg¥aradigm. There are three key ideas that underpin our pegpos

such as stateful packet firewalls and Network Address Traf2Proach: decoupling message transport from next signalin

lators (NATSs) [5]. Although theResource ReSerVation Pro-

hop discovery, reuse of existing transport and securityopro

tocol (RSVP) [6], [7] has been developed, existing studieSOlSv and the introduction of a location-independent sessi

on RSVP have tended to focus more on QoS reservatigigntifier. This approach enables us to effectively support
models — initially IntServ [8], later DiffServ [9]) and thei 9€neric IP S|_gnal|ng that can be used for various signaling
performance [10], [11] — rather than the signaling servic&§€narios, with an enhance_d protocol flexibility. _The NSIS

they essentially provide. Apart from this, shortcomingstia WOrking group reused many ideas from CASP and is standard-
RSVP design e.g., lack of a solid security framework ar@ing @ General Internet Signaling Transport (GIST)* [25] as

X. Fu, C. Dickmann and D. Hogrefe are with the Institute foiohmatics,
University of Gottingen, Germany, Emaiffu,cdickman,hogrefp@cs.uni-
goettingen.de.

H. Schulzrinne is with the Department of Computer Sciencelu@bia
University, New York, USA, Email: hgs@cs.columbia.edu.

H. Tschofenig is with Nokia Siemens Networks and Universij
Gottingen, Germany, Email: hannes.tschofenig@nsn.com.

Manuscript received on December 6, 2006 and revised on 1@bptel0,
2007. This is a revised version of [61].

the base protocol component of NSIS protocol stack to suppor
a variety of signaling applications.

In this paper, we study the protocol overhead and perfor-
mance aspects of GIST and compare with RSVP, the preceding
path-coupled signaling protocol. While some results are ou

1The protocol described here was known as GIMPS (Generalnktte
Messaging Protocol for Signaling) until its final name wass#n in August
2005.



implementation specific, we believe the tests and resudtsldh
approximate some common behavior in other GIST implemen- NSLP
tations. The results confirm that GIST is meeting its major

design goals. Our experience has been that implementation

NAT/Firewall
NSLP

QoS NSLP

Metering NSLP

____________________________ GIST
details are very important to achieve all of the benefits of N I Tooan
GIST.

The organization of the paper is as follows. Section Il ™' < ‘ (General Intermet Signting Transport Frotocal) ‘
provides a short introduction to GIST, Section Il discissiee [ \ [ [

results of a study which indicate that the additional ovathia NTLP i Transport Layer Security |
GIST are largely due to modularity and security. Furthemnor | l \ |

it delineates the limitations of QoS-centric approaches in [uoe HTC‘P HSC‘TP HDC‘CP e
providing generic signaling services. We then elaborate ou IP Layer Security ;
GIST performance study and implementation details in Sacti \ i A Loclssssd cssslcssskssss

IV. Section V concludes this paper.

T

II. ANINTRODUCTION TOGIST

A. NSS A Two-Layer Sgnallng Framework Fig. 1. NSIS: a Two-layer Signaling Framework

In order to meet the requirements for an extensible, generic
signaling protocol, the design of the NSIS protocol suifgase
rates the transport functionalities (such as reliabifiggmen- to signaling transport: a per-session message routing stat
tation, congestion control and integrity) for signalingssage (MRS) for managing the processing of outgoing messages,
transport from signaling applications. Thus, following2]2 and a message association (MA) state for managing the per-
[23], signaling functions in NSIS are split into two protdcopeer state associated with connection mode messaging to a
layers [27]: particular peer (signaling destination address, protaoud
« An NSIS Transport Layer Protocol or NTLP, primarilyPort numbers, internal protocol configuration and staterinf
composed of a specializatlessaging layer, denoted as Mation). In addition to its neighboring GIST peer infornoatj
GIST [25], which is used to transport thggnaling GIST also maintains certain message routing informatioch s
application layer messages. The GIST layer is runnings flow identifier (flow ID), NSLP type and session identifier
over standard transport and security protocols. Examplggssion ID), to uniquely identify the signaling applioati
of such protocols are UDP, TCP, SCTP and DCCP, wilgyer session for a flow.
or without IP security (IPsec) or Transport Layer Security GIST has two modes of operation: tdatagram mode (D-
(TLS) mechanisms; in the current version, usage of UDPode), which uses an unreliable unsecured datagram transport
TCP, TLS over TCP [25] and SCTP [26] are specified.mechanism, with UDP as the initial choice; and toanection
« NSIS Signaling Layer Protocols or NSLPs, each rufode (C-mode), which uses any stream or message-oriented
signaling application-specific functionality. Examplefs otransport protocol (currently TCP as the initial choicepan
NSLPs include the QoS NSLP for resource reservatidhay use IPsec security or TLS. It is possible to mix these
signaling [28] and the NAT/Firewall NSLP [29] for two modes along a chain of nodes, without coordination or
middlebox configuration. manual configuration. This allows, for example, the use of D-
The different layers are depicted in Fig. 1. mode at the edges of the network and C-mode in the core of
the network.
, Let us have a look at a standard GIST operation using
B. GIST Overview an example (cf. Fig. 2), where A is QoS NSLP while B
The GIST protocol, as described above, forms the fundia- another type of NSLP. Assume a QoS NSLP RESERVE
mental building block of the NSIS protocol suite. The maimessage is generated by GIST at the NI (the flow sender).
task of GIST is to deliver signaling messages for variouhe GIST module first constructs a GIST-query message,
NSLPs between neighboring GIST nodes that support the sananely a UDP datagram addressed to the flow destination and
NSLP. The NSLP itself is responsible for pushing the sigmali includes an IP Router Alert Option [30] (similar to RSVP).
message from the NSIS Initiator (NI) towards the NSIShe next downstream NSIS peer which supports QoS NSLP
Responder (NR), typically the flow source and destinatio(R2) recognizes this message and replies to it with a GIST-
respectively, as GIST just provides means to transport frdResponse message. Upon the receipt of this response, the NI
one node to the next on the path. The NI and NR can, howevergates a message association with R2, upon which allows
also be represented by proxies, e.g., to support end systaihssubsequent GIST-Confirm or GIST-Data messages (i.e.,
that do not themselves have NSIS capabilities. GIST messages with NSLP payload) between these two peers
Instead of building a new transport protocol, GIST reusés be sent. Upon receipt of such GIST messages in R2,
existing transport and security protocols to provide a ersgl NSLP payload and the flow ID are passed to its QoS NSLP
message transport service. Like RSVP, GIST is a soft-stggecessing. Note it is the responsibility of the NSLP layer
protocol. It creates and maintains two types of statesaélato determine the action upon recept of a GIST message. If



the QoS NSLP in this node determines that it has enough Canode ) (CRenode ) (Canode ) (Rmode )

resources as requested by QoS NSLP RESERVE message, it " Sackp + @ sached (Open server oo

will make a tentative reservation for the session. The QoS  Response (0-mode) | " e Response |

NSLP RESERVE message will continue to, via the GISTw: | | acoem s gt | Gereme

layer, be delivered to the next QoS NSLP node in the path asue TSP

the same process described above. When the NR QoS NSLP | [~ “Gemacg | cmecton o

eventually receives the RESERVE message, it responds along [ “rae ] [ (0-or C-modey ]

the_reverse path towards the NI with a RESPONSE m.essage a) C-mode MRS+MA setup b) D-mode or C-mode (MA exists) MRS setup

to finally confirm the establishment of the reservation. lis th

example, the QoS NSLP payload (e.g., for signaling IntServ

would be primarily SendefSpec and RSpec) is delivered,

examined and possibly modified in intermediate nodes, acrd#g. 3. GIST session setup

a chain of QoS NSLP aware nodes.

NI R1 R2 R3 NR 1) Authentication of the two neighboring protocol peers;
Non-NSIS 2) Security association establishment to provide intggrit

NSLP A | node p| NSLPA | | NSLPB | | NSLPA confidentiality and replay protection for signaling mes-
GIST GIST GIST GIST sages exchanged between these entities;

3) Denial of service protection;
4) Some security protection for the discovery mechanism.

It is difficult to design a new security protocol to address
all these issues. Existing security protocols (such as TLS o
Fig. 2. An example of GIST operation IKEv2/IPsec) already provide a number of these features) su
) as properties 1), 2) and 3), but at the cost of considerable
A GIST message consists of a common header andsgyp latency. The establishment of a secure channel betwee
sequence of type-length-value (TLV) objects. The commQfiynaling peers to protect all signaling messages (which ca
header indicates the message type (Query/Response&sC.he|ong to any signaling session), is recommended. This in
well as the NSLP ID and hop counter to avoid message l00Rg |imits the per-session security association setup €os
In addition, GIST can use query- and response-cookies {6lmode.
protection against spoofing and denial of service attacks  Aythorization at the GIST layer aims to ensure that a GIST
GIST-Query messages are retransmitted with exponentighode only establishes communication with a legitimate
backoff if a corresponding GIST-Response is not received @f)ST |njtiator. It is even more difficult to ensure that theS3|
time. Other NSLP messages encapsulated in D-mode are pfator sends signaling messages to the “right” GIST peer
retransmitted; they rely on initial GIST-Query messagea thiwhich supports a specific NSLP); this requires authorzati
are eventually resent. Whenever possible, re-use of Bgistinformation to be provided along with the authentication
reliable transport and security protocols is recommendad Vg key exchange process (e.g., as part of the authorization
the C-mode in GIST. This is necessary with larger data objectertificate). These aspects are described in [32].
when a fast state setup in the face of packet loss is desirablereg|axing assumptions regarding the desired protection
or where channel security is required. A querying node (Qgainst man-in-the-middle adversaries might often beiredu
node) can choose to refresh the message routing stateahy desired. Furthermore, in most cases it is difficult for

resending a GIST-Query. Local policy can determine whethgfisT to make an authorization decision without consulting
it is necessary to maintain an MA (e.g., a node may choosei NSLP layer.

keep the MA open if there are sessions still in place, which

might generate messages that would use the MA). If no MA

exists between a Q-node and the responding node (R-node), @ - @
and the Q-node desires to run over C-mode, it will send a 7(NSLP-ID/SID/Mli?u(?cr))rl)kie(Q),...)H
Query with a stack proposal and stack configuration data to 1S T-Response

negotiate (on the desired C-mode transport protocol, EQp, € (Cookie(R), Cookie(Q),..]
TCP+TLS) with the R-Node during the discovery phase (see «——(Authentication and Key Exchange)——|

Fig. 3(a)); TCP three-way handshake is required to setup the

MA. C GIS T - Confirm(Cookie(R)y——»| )

Channel Security

A detailed GIST protocol description can be found in [25]
and its corresponding state machine operations are dedcrib

in [31] Fig. 4. Protection of the GIST discovery procedure
_ In order to deal with adversaries that redirect signaling
C. GIST Security messages, the cookie mechanism has been integrated into
Security mechanisms for GIST try to provide the followinghe discovery exchange. This mechanism (see Fig. 4) can be
properties: illustrated as follows. The cookies provided by the quegyin



and responding node (Cookie(Q) and Cookie(R)), e.g., 25&ssion setup with minimal security support (i.e., onlykieo

bit cryptographically random nonces, are used to prevel®@ Dmechanism is used):

attacks, similar to those used by other protocols (e.g.,/SQT 1) There is no TCP connection. This requires a
IKEv2). Cookie(Q) is included in the GIST-Response message  GIST-Query(with  stack  proposal)/(TCP-SYN/TCP-
to prevent off-path adversaries from flooding the querying SYNACK)/Response/Confirm process, which in turn
node with bogus responses. The initiator uses this cookie to imposes 176+44+44+220+188=672 bytes message
match a request with a pending response. Once a security overhead, in addition to the memory overhead for a
association has been established, Cookie(R) is transimitte  new TCB/TCBI state [56], [57], a new GIST message
from the querying node to the responding node. This allows  routing state and a new GIST message association state.
the responder to verify that it has actually participatedhie 2) Message association already exists. This requires a
discovery exchange, binding the discovery procedure to the GIST-Query(no stack proposal)/Response/Confirm pro-
subsequent exchange. More details of authentication and ke  cess, which imposes 144+188+188=520 bytes message
exchange as well as possible cookie construction in Fige4 ar  overhead, in addition to update of TCB/TCBI state and

provided in the GIST specification. a new GIST message routing state.
Thus, for signaling session setup, GIST C-mode requires 4
I1l. PROTOCOLOVERHEAD (or 3, when MA already exists; same applies below respec-

Every signaling protocol imposes some overhead in the fori#ely) messages, totally 672 (or 520) bytes overhead,Her t
of number and size of control messages, which is indicative $€nario where no TCP connection exists (or MA exists).
the total bandwidth consumed by the signaling protocol andWith GIST D-mode, no connection setup is required, but
must be processed in signaling-aware nodes. In this sectfBffe-way handshake in GIST layer is still needed, imposing
we discuss the sources and quantities of protocol overtread-f#4+176+136=456 bytes message overhead, in addition to the
GIST as opposed to RSVP For convenience we considercréation of per-session GIST MRS and update of per-peer
the primary signaling messages used for state setup af@*TCP connection state. _
maintenance: GIST-Query, Response, Confirm and GIST-DataVith RSVP, on the other hand, in order to carry the
in comparison with RSVP-Path and RSVP-Resv; RSVP/GI§19n"f‘|ed data (SenddiSpec and Guaranteed/Controlled-Load
Error, MAHello and RSVP PathTear/ResvTear messages ae Vice FlowSpec) of 12+48=60 bytes (Guaranteed Ser-
omitted here for simplicity. v!ce)/12+12=24 pytes (ControIIed—Loa_d Service), everg-se
The detailed sources of overhead (including message &gl S€tup requires a Path+Resv pair of 64+72=136 bytes
memory overhead) in each of the layers of a GIST protocdPv4)/184 bytes (IPv6) message overhead, in addition to

structure (based on the latest draft version of [25]) aremivCréating a new PSB and a new RSB. .
in the Appendix, in comparison to RSVP. Table | summarizes PO convenience we assume the QoS NSLP payload is the

the overall message overhead for common message typesS@Me as RSVP, namely, Sendepec and FlowSpec. Per [28],

With this information we are able to analyze the overhegMinimal QoS NSLP header length for the basic messages to

of the two signaling protocols, GIST and RSVP. On the orf€liver these payloads are: QoS NSLP RESERVE: 16 bytes

hand, layering in GIST makes it possible to provide the gainefQ0S NSLP common headgr + RSN) and
functionalities required for signaling transport, namely QoS NSLP RESPONSE: 16 bytes (Q0oS NSLP common
header + INFOSPEC)

« Error control: GIST makes the “channel” more reliable Overall, QoS NSLP layer adds at least 32 bytes more
l(:tl)y reuS|rt\g Ir_e(l's"’llgl_? tfaﬁgpc}? p(;qtocolls); by si overhead in addition to the overhead incurred by GIST.
¢ low controt. avolds Tooding siower peer by sig- According to this analysis, a comparison of overhead for

naling message flow control, GIST (D-mode and C-mode, including with and without MA)

« Fragmentation: Dividing large data chunks into smallef QoS NSLP and RSVP is given in Fig. 5. It can be noted
pieces, and subsequent reassembly (e.g., TCP MSS fr it most of the protocol overhead of GIST results from the

mentation/reassembly for large sizes of NSLP payload wer levels of the protocol stack during the session setup

» Multiplexing: A”.OW multiple sessions to share a Slnglephase, while in steady state (session refresh case), aksnod
message association between ad]z?\cent peers, of GIST operation have no significant difference in terms of
« Connection setup: Handshaking with peer (e.g., by TCfyorpeqq compared with RSVP. For instance, using the GIST
three-way handshake). D-mode together with QoS NSLP which is closest to RSVP
More importantly, GIST provides richer security supporpperation, it incurs overhead of 488 bytes for session setup
which makes it easier to support mobility and allows highase and 132 bytes for session refresh case (compared with
modularity to allow any signaling applications with a compa) 36 pytes in RSVP for both cases). The most heavy-weight
rable requirement for state repository. situation is when a GIST C-mode is desired but MA is not
On the other hand, layering and more functionality suppajkt established, GIST/QoS NSLP incurs 702 bytes for session
increase message and memory overhead. For example, ifsetup; when an MA already exists, the corresponding overhea
mode is desired, there are at least two possibilities forTGISgr session setup is 552 bytes, only slightly higher than D-
°Note there are some small changes in this paper compared taithbers mOde. operatlon. . .
given in [61], to count for more fair and accurate comparifon QoS This comparison demonstrates that GIST's rich functional-
signaling using GIST/NSIS and RSVP ity, modularity, security, and mobility support is also anga-



TABLE |
OVERHEAD BY PROTOCOL LAYER(IN BYTES)

| Message typ&Protocol layer [ IP Tayer | Transport layer | GIST layer [[ Overall overhead |

GIST-Query (no stack proposal) || 24 (IPv4), 48 (IPv6) 8 112 (IPv4), 152 (IPv6)|| 144 (IPv4), 208 (IPv6)

GIST-Query (with stack proposal) 24 (IPv4), 48 (IPv6) 8 144 (IPv4), 184 (IPv6)|| 176 (IPv4), 240 (IPv6)

GIST-Response (D-mode) 20 (IPv4), 40 (IPv6) 8 148 (IPv4), 188 (IPv6)|| 176 (IPv4), 236 (IPv6)

GIST-Response (C-mode) 20 (IPv4), 40 (IPv6) 20 180 (IPv4), 184 (IPv6)|| 220 (IPv4), 244 (IPv6)

GIST-Confirm (D-mode) 20 (IPv4), 40 (IPv6) 8 108 (IPv4), 148 (IPv6)|| 136 (IPv4), 196 (IPv6)

GIST-Confirm (C-mode) 20 (IPv4), 40 (IPv6) 20 108 (IPv4), 148 (IPv6)|| 188 (IPv4), 208 (IPv6)

GIST-Data (D-mode) 20 (IPv4), 40 (IPv6) 8 72 (IPv4), 116 (IPv6) [[ 100 (IPv4), 164 (IPv6)

GIST-Data (C-mode) 20 (IPv4), 40 (IPv6) 20 72 (IPv4), 116 (IPv6) || 112 (IPv4), 176 (IPv6)

(TCP-SYN/SYN+ACK) 20 (IPv4), 40 (IPv6) 24 = 44 (IPv4), 64 (IPV6)

(TCP-ACK) 20 (IPv4), 40 (IPv6) 20 = 20 (IPv4), 60 (IPV6)

RSVP-Path 24 (1Pv4), 48 (IPV6) 0 = 64 (IPv4), 112 (IPv6)

RSVP-Resv 20 (IPv4), 40 (IPv6) 0 — 72 (IPv4), 108 (IPv6)
200 NSLP application (“Ping”) [35] for testing purposes. If not
con otherwise mentioned, this document discusses our original
500 implementation released as version 0.1.0. It consists ofiab

400 +
300 1
200 +

6,900 lines of code in total, which comprises about 1,30€dlin
for the core program, 2,000 lines for state machines, 7@&3%lin

W Session setup

] B session refresh for state management, 1,400 lines for message parsing and
@ & & o processing, and 1500 lines for the GIST-NSLP API. In additio
,\@ﬁ“’ & & Q\g"* to the original version, this document covers an improved
& & us°° ey version 0.5.2, which incorporates a new timer management,
(,é“(’ # & as well as many new features the original prototype lacked.

The code is publicly available in [36].

The implementation architecture is shown in Fig. 6. It has
been developed based on a single process approach using a
main event loop based on XORP [37] library, which is used

nied by certain costs. Indeed, similar to other generappse t0 implement socket maintenance and callbacks as well as
protocols, GIST does have its disadvantage of higher pobtodéimer callbacks. This design has no additional overhead for
overhead in terms of large messages, more message exchariga#itaining and synchronizing multiple threads, whictuftss
additional parsing and processing. However, as we will cofit @ high throughput and a rather simple implementation.

firm in Section IV-C, with some appropriate implementation
considerations and optimizations, it is possible to adhiav
signaling performance in terms of maximal number of sup-
ported sessions, CPU and memory consumption in steady stat
comparable to existing RSVP implementations. Furthermore
it should also be noted that in many scenarios signaling
application payloads are rather large (which can easilgedc
normal link MTU), e.g., certificates and active programming
packets, where the transport capability of GIST becomes of
greater use and the relative GIST protocol overhead become

5
much less. In addition, concepts of staged timers [12], [33]
and state compression [34] can also be considered.
-

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we evaluate the quantitative pen‘ormancrJ
of a GIST implementation through benchmarks, and show Es 6
performance is roughly comparable to KOM RSVP [11], and”
scales well with the number of signaling sessions.

Fig. 5. Overhead comparison of GIST and RSVP

essage routing state (MRS) Table Message asssociation (MA) Table

Flom il Sender FSM  [H
Receiver FSM | 7 UDP Socket
e Sender FSM TCP Socket
Receiver FSM ]

MA#S TCP Socket
AR Sender FSM MA# |
Receiver FSM / TCP/TLS Socket

Event loop

GIST-NSLP API

RAW Socket

Implementation Architecture

Besides the event loop, a key component in GIST im-
. . plementation is state management. In order to support tens
A. Implementation Overview of thousands of signaling sessions efficiently, we used a

We have implemented the GIST protocol in C++, usingash table to manage the MRSs, associated with linked lists
Linux 2.6 kernel. Our implementation is fully conformanto resolve conflicts. A standard lookup takes constant time,
to the GIST protocol and its API (currently we supporhowever in the worst case, all table entries would be congpare
draft version 14 [25]). We have developed a benchmarking find a given MRS.



To search the MRS table, one needs to know the associ-The Ping tool is a light-weight NSLP protocol that sends
ated key information, namely the session ID, the NSLP |Bo-called Ping messages through a GIST aware network. The
and message routing information (MRI). This is nevertheletraversed nodes insert a timestamp and information abeut th
subject to some limitations, e.g., it is not possible tosledor local node (i.e., the IP address). When the message reaches
all MRSs using a specific MRI. Such a search feature may ke destination host, it is redirected upstream and trasetise
useful to find MRSs that are affected by a detected link failurnetwork back to the original sender.

A possible solution is to maintain specialized hash tabbes f We use this tool in our experiments to model the scenario
link failures, which would allow for quick searches. Howeve of a real NSLP application without introducing unnecessary
this approach would add maintenance overhead to every MB&rhead. Our main goal was to measure the maximal number
table (which usually comprise a number of tables) operatioaf sessions a backbone router can maintain. In addition, the

In addition to managing MRSs, a GIST implementation hdeol was intentionally designed to involve other aspectsa r
to manage MAs for C-mode operations. If two peers alreadySLP application would likely require, including:
have an MA and a new session is being established on the samg GIST layer session lookup;
path, the MA should be reused to minimize resource usage, GIST layer session refreshes;

This feature implies that there should be a way to search the, Communication between GIST and the NSLP layer;
MA table for an MA that can be reused for a certain session., NSLP layer message processing.

Our implementation uses a second hash table to accomplisky, orqer to accomplish these goals, we disallow both main-
that goal. The upstream peer information (PI) serves as fag,ing timers for the NSLP application and storing NSLP
key information. The UDP socket is treated as a "virtual” MAyy o state, but allow the sending node to send a Ping message
for the convenience of unifying the socket interface modul&y gach session every 30 seconds in order to simulate NSLP

_ Another important component of the GIST implementatiogepyior (this message can be regarded as a refresh message
is the finite st_ate machine (FSM) to maintain states for eaghihe NSLP layer). As a result, we were able to use this tool
session. We implemented the GIST FSMs [31] based om@gydy the GIST performance and scalability. It is expecte
combination of the XORP timer class and an FSM framgnat 4 real NSLP application would have additional overhead
wc_)rk that was ongmally wntten.for the_ Linux ISDN deV'Ce(incIuding timers, parsing and state management, all in RISL
driver [38]. Every MRS is associated with two FSMs, one fQGyer) resulting in some worse results in terms of roung tri

the upstream peer and another one for the downstream pgfes and maximal number of sessions that can be maintained
There is no need for a global table of FSMs, because evely, time.

MRS provides pointers to the associated FSMs. In addition, o simple PHP script measures the CPU and memory
every MA has a list of FSMs which it is associated with, Syjjization every second using the proc-filesystem entries

that the_s_tate _ma_chlnes can be informed e.g., when a lossf same fashion as the popuiap program. After completing

connectivity with its current peer takes place. the test, the script uses the debugging component of the GIST
implementation to fetch internal statistical informatide the

B. Testbed Setup and Tools average number of entries in the used hash table buckets.

To calculate the round trip times (RTTs), the information

ntained in every Ping message is saved on the sender and

er the test is completed the collected timestamps aré use

to calculate the round trip times. As the measurements were

conducted in lab environments without intervenience from t

background traffic, the standard deviations for the obthine

« 256 MB SDRAM PC 133 values were very small, for example less than 0.3ms for the

« 20 GB HDD RTTSs, thus the results are meant as the mean values.
Fig. 7 depicts how we connected the nodes for our experi-
ments.N; and/orN, was used as the sending host(s) — NI(s
while N3, Ny or N5 were the flow destination(s) — NR(s).b Performa.n.ce .Study . o
In addition to the benchmarking tool “Ping”, we have also 1) Scalability in Number of Sessions: As signaling proto-

developed an Ethereal GIST dissector [39] for monitorirng tH0IS maintain and manage soft state in network nodes, the mos
GIST messages. critical performance metric for GIST is the upper limit oreth

number of sessions a GIST node can maintain. Additionally,
we would like to evaluate how the CPU load and memory
consumption scale with an increasing number of concurrent
sessions. Other parameters like average RTTs were callecte
too. We performed three experiments for this test.

In the first experiment, we usel¥; as the NI andN3 as
the NR, and let the NI first established a configured number
of sessions and then emulated refreshes for all of them and
measured performance &f;. The refresh intervals for NSLP
Fig. 7. Testbed Setup and GIST MRS were set 30 and 180 seconds, respectively.

The performance experiments were carried out on 6 low-
end PCs running Linux 2.6.8.1. They are equipped with tf‘ﬁ%
following hardware: a

o Via Eden CPU 533 MHz
o 3 Realtek 100 Mbps NICs




The results are shown in Fig. 8-10. The first observation
is that the increase in CPU load and memory consumption is
nearly linear. With the original implementation, the comgu
tion of CPU time reached 70% (C-mode) — 71% (D-mode) of
the whole system when serving 60,000 sessions at a same time
in our test. Serving the same number of session, the improved
version 0.5.2 consumed 75% (D-mode) of overall CPU time.
While similar in overall performance, the new version is
slightly slower than the original one. The assumption that
optimizations in timer management and message composition
compensate for the increased complexity in message vialidat
and GIST logic is backed by the per-routing processing time
study presented later. Fig. 10. Effect of concurrent sessions on average RTT

The second observation is that the RTTs were very small
(4.8-5.2ms) before the session number reached 50,000, It ) o
increased to 56.2ms when serving 55,000 sessions, thenfiroducing some optimizations, such as the ones suggested
creased rapidly afterwards, reaching 7.0 seconds wheingenn Section IV-E.

60,000 flows, indicating approaching the exhaustion ofesyst Another experiment we performed was to measure the

resources (memory/CPU/interface) in network nodes. approximate processing time (i.e. the time difference from
incoming to outgoing message) required for a GIST message

Now e o~
N

Avg. RTT (seconds)

|

50000

D)
55000 L_

1000

5000 4
10000 4
15000

o o
[= =1
o o
[= )
IS

0000
35000
40000
45000
50000

©
Number of sessions

e oSTEmoda) e GET Dot in an intermediate node. Taking both th§ and N, as the
gy RSP ——GIST(Ohode) 052 flow receiver and using ethereal dissector, we performed tes
£ )r’“ for 20,000 and 60,000 simultaneous GIST sessions in steady
E X f" state, respectively.
§ w0 JM In the light traffic cases (20,000 sessions), the resulta/sho
52 > that the average processing time for GIST-Query and Respons
? ;“:f_z_j: P, messages was very small, about 0.25 ms, whereas a GIST-Data
S88E8EEE5EEE88¢ (carrying Ping NSLP) message took the average processing
Number of sessions time of 1.1 ms. This conforms to the RTT results obtained in

Section IV-C.1.

In the second set (the more heavy-load traffic case), the
processing time for Query/Response increased to 0.9 ms,
whereas for a GIST-Data message it increased to 20 ms. This
confirms our observation in the first experiment, namely when

Fig. 8. Effect of concurrent sessions on CPU consumption

—+—GIST(C-mode) —m—RSWP |

160

gmo » entering the heavy load traffic range, RTT is starting to be
g //_:- much larger than the ligh traffic case.

pos ,.44":./-—1 We also did performance tests of a recent RSVP imple-
§ 10 e — mentation, the KOM RSVP engine [11] in the same testbed
IR = Zaf— and PC hardwares. The results are also shown in Fig. 8-10

1000 |
5000
45000
50000
5000

and we could conclude that we obtained roughly comparable
results. After fine tuning of the environment for running
KOM RSVP, we observed that KOM RSVP grows slower
Fig. 9. Effect of concurrent sessions on memory Consumption fOI‘ CPU Consumption W|th Session numbel’ increases: When
serving 60,000 simultaneous sessions, KOM RSVP just needed
In the next experiment, we studied the case where tvaout 20% of CPU time, in comparison with 70%. This
senders §; and N), one intermediate node\g), and one difference demonstrates certain properties of implentiema
receiver (V4) were involved. NSLP refresh interval was 3®pecific design and the testing environment, for example: 1)
seconds, and GIST refresh rate was 180 seconds. We let ethehuse of XORP timer turned out to consume 50% of the
of senders serve 30,000 sessions, so receiver had to hawodierall CPU usage in our GIST implementation, while the
60,000 sessions. The measured RTT turned out to be abiuzizy timer approach allowed KOM RSVP to manage timers
5.5ms. This confirms that the bottleneck for RTT in the testaore efficiently [11], 2) in order to reach high signaling
above is the sender and not the receiver. loads, we did not change anything to the system environment,
Based on these observations, we obtain a rough estimatwiile KOM RSVP was necessary to be deliberately tuned,
of the upper limit of the supported session number in a GISWost likely due to a different development hardware/soféwva
node, which is at least 60,000. Note after the concurreptatform the KOM RSVP developers chose. On the other hand,
session number of 45,000, the average RTT increases rapithg required memory for KOM RSVP was found to be rather
thus the effective session number that the system can suppimilar to that for GIST: it was just 20% less than GIST C-
is estimated as 45,000. This number may be improved byode when both serving for 60,000 simultaneous sessions; fo

10000
50000 |

5] n
NN oM W

(=1
(=1
o o
o
=
Number of sessions




small numbers of sessions (less than 15,000), it required ewach individual routines in the GIST code, using tof
more memory than our GIST implementation. This is due tool. Table Il shows the profiling results for each routge’
our introduction of optimizations (see Section IV-E). contributions to the overall system processing. It revézds

Ideally, the memory consumption in different signalinghe XORP library consumes over half of the total running time
loads should be straight linear, but Fig] shows that there mostly for managing XORP timer facilities. The reason ig tha
were some turbulence over the time. This is likely causetORP uses a sorted heap to structure the timers — a more
by the indeterministic OS scheduling regarding the receigtetailed profile shows that maintaining this heap consurpes u
queuing and delivery of each GIST/RSVP message, as btth38 percent of the overall runtime of our implementation.
KOM RSVP and GIST were implemented as user spaddis is due to the fact that, while adding and removing a heap
daemons. element imposes a time complexity ©flog(n)), the heapify

2) Analysisof Session Setup Time: When GIST is used in a algorithm costsO(n log(n)), wheren is the total number of
real application (not just a Ping client), a critical metische timers.
time required to finish the first signaling round trip (e.gQaS
reservation). This involves the GIST three-way handshake f
every hop-to-hop connection that is performed sequewtiall

TABLE Il
RUNTIME PROFILES OF THEIMPLEMENTATION

which could result in a rather long initial setup delay. Oy<0de component :f’gfltgt‘?l run\?'%g;'?e
measurements show that this delay was between 3ms andL%.T,sXORP T Own implementation =% 0%
for D-mode or C-mode scenarios when an existing messageT Timer Management 2% 5%
association can be reused. The number of sessions for thig? Socket Management 10% >%
measurement ranged between 15,000 to 25,000. 5-1R§Ziievii\:‘ig i”;?gﬁg;sgtr?gﬁzzigg - 22;0 igff

3) Impact of GIST Message Routing Sate Refreshes: The  5opecar egparsing T oo
main responsibility of GIST is to manage the MRSs and MASz e e e composing and mtermnal readfig 17% | 6% |
which are used in delivering NSLP messages from one pe&fzsn tables (MRS and MA) 8% | 18% |
to another, where both states are soft states. We study &€ Fnite state maschine [ 7% | 15% |
effect of MRS state refreshes since MA state refreshes PB_NSLP level processing (ping) [ 1% | 5% |
periodically GIST-Hello messages are not necessary ifetheFr7_ Miscellaneous [ 6% | 0% |

are some active signaling messages between the peer pair.
We chose 30 seconds as NSLP refresh interval and ran

tests under different refresh intervals for an overall nandf Table Il also confirms that version 0.5.2 is slower than the

15,000 GIST sessions betwedh and V3, all links operating original version due to additional overhead spent on viéitida

on C-mode. during message parsing, as well as more complexity in the
The measured CPU load iN3 are summarized in Table Il. GIST state machine. These kinds of performance penalties ar

a common phenomenon of maturing software, caused by more

TABLE I .
and more corner cases being detected and handled properly.
IMPACT OF GIST MESSAGEROUTING STATE REFRESHINTERVAL ON ! . .
CPU LoAb 5) C-mode versus D-mode: GIST is capable of operating
— e in both C-mode and D-mode. so that the difference in CPU
[ Refres 'gg“’a (sed) [ % o OZSO/Use y | load between both modes of operation is of interest. We
0 e implemented C-mode in both TCP and TLS/TCP but the
90 43% evaluation here focuses on using TCP as transport.
120 422@ Fig. 8 shows the CPU load for a different number of
128 3302 maintained sessions in C-mode and D-mode. From this figure
510 20% we can conclude that the CPU load does not make much

difference from each other.
Given that TCP offers a number of transport features desired
This indicates a small refresh interval at GIST level Onljbr Signa"ng protoco|si as outlined in Section Ill, the abo
introduces CPU load. Given the rel|ab|l|ty properties of Cresu't Suggests that C-mode should be used as much as

mode, a relatively long refresh interval (e.g., 180 sec) gbssible instead of D-mode for GIST message transport.
GIST level for MRS maintenance which impose limited CPU

overhead should be enough, especially where route changes .
are not frequently experienced. - Bucket-based timer management
We performed some more tests where all the 6 nodes in theThe results obtained during our initial performance study
testbed were involved, and the results demonstrated siynilaclearly showed that the XORP timer management was a major
A stably low CPU load in intermediate nodes was observéattleneck in our implementation. Hence, we decided toctwit
when the GIST MRS refresh interval was set about 180 ser a different, much more efficient mechanism. As already
(also the reason why we selected this value as default refreiscussed, XORP uses a heap to organize all active timers,
interval in other tests). which requires to run the complex heapify algorithm for
4) Per-routine Processing Time: In order to study the each addition and removal of individual timers. While this
bottlenecks of the implementation, we performed profiliag f is reasonable for a diverse set of timers, it is very ineffitie



in GIST, where many timers share the same structure: THata to ensure integrity. Network protocol implementation
resolution of GIST timers is in seconds instead of milliset® however, cannot afford to waste CPU and memory resources.
and the firing interval for GIST timers is not diverse, i.e.nma As a result, ideally there should be just one copy of every
flows are likely to share the same refreshing interval. Thuscoming and outgoing packet and all code parts should use
we decided to group timers based on the combination of tyminters to the part they want to use. The zero-copy approach
properties: The interval and the starting offset. The offse which was not yet fully implemented in our code, reduced
defined as f fset = time_since_startup mod interval. For CPU load by about 20 percent.
example, a timer which is created 50 seconds after the starAnother performance bottleneck was found to be a poor
of GIST and which is supposed to fire every 30 secondsgsign of the implemented hash table — initially we used the
will have an offset value of 20 seconds. Every intervalketffs standard hash function, where 1 byte array as the hash key
combination corresponds tokmicket which uses a linked-list and dense size in rehash turned out to be very computation
to store any number of timers. consuming. The hash function used now is still simple but
The total number of buckets GIST has to manage &fficient: The key is treated as a 4-bytes array and the hash
drastically lower than number of timers. Imagine an optimailue is the sum of the values in the array reduced modulo
case, where all intervals are the same. In our case we u$leel hash table size. Ldt;, ko, ..., k,, be the values of the
an interval of 180 seconds for GIST refreshes, which meaimteger array ang be the hash table size. Then the (current)
that there are no more than 180 buckets (i.e. one for evérgsh function is given by:
possible offset). In order to insert a new timer, the matghin
bucket needs to be found and the timer needs to be added hash(k) = (k1 + k2 + ... + ky,) mod p

to the linked-list. To check which timers have to be firedT

the system needs to look at every bucket and check 2&‘2'3_ ;eﬁ_l:]ltesol:; ﬁlgohsjéﬂ?uzg:% %tgzgggoorf ;r?lgﬁz froofr‘rig :ce)
time_since_startup mod interval = of fset holds. If the ' 9 y y

- . . . values, in contrast, results in a very limited range of otitpu
condition holds, all timers contained in the bucket needeo b . ery 9 utp
. . . . . . values, because all thig are just in the range of 0 to 255
fired and otherwise the bucket is skipped. Execution of timer : . .
) i . : and a typical number of bytes is 16, resulting the range of the
is only done once per second, while adding new timers s

i . h function was 0 to 4080. This means that a huge part of a
done many hundred times per second in heavy loaded Gl o
. o arge hash table was never used and so the distribution along
nodes. Therefore, we decided to further optimize the look

. L : ) e range was not uniform.
of buckets matching a certain interval/offset combinatibims The hash table is rehashed with a higher hash table size

is done by organizing the buckets in a hash table. As we neeﬂ the load fact q tain limit (i 05
to walk through all buckets when firing timers, the hash tab enever he load factor gxcee s a certain limit (i.e.,.0.5)
e load factor is given by:

should be densely populated to avoid checking hash value

which do not contain any bucket. Hence, we decided to use a stored elements

hash table size of 60. Using the example from above (refresh load factor = hash table size
interval of 180 seconds), we end up with approx. 3 buckets
per hash value. Originally, the list of supported hash table size was dense,

Table 11l shows that our new timer management is mudhhich resulted in the need to rehash very often. The solution
more efficient for managing GIST refreshes than the genel#ds to rapidly increase hash table sizes exponentiallyt(ies
purpose heap-based XORP timers. While XORP timers used@sh table size is more than doubled from one value to the
consume over 40% of overall CPU time, the new timers cofi€xt) to quickly achieve the necessary size while miningzin
sume less than 10% CPU time in our most recent implemeighashing turns, which turned out very effective.
tation. Please note, that the two measurements are noglgntir By optimizing the hash table, the average number of items
fair, as the new numbers are obtained with version 0.5.2 of di one hash table bucket was reduced by one magnitude and
implementation, while the XORP numbers where measur8ite overall GIST performance increased by approximately 20
with the original 0.1.0 release. As seen in Section IV-Clig d percent.
to increased complexity in GIST handling, the overall CPU The most important optimizations discussed above were
consumption of the 0.5.2 version is slightly higher complarealso accompanied by less significant changes. Some fusction
to the original one. Nevertheless, the performance gain dwere called several million times within a few minutes of

to switching to the new bucket-based timer managementdgeration, which resulted in a large amount of overhead.
significant. Using theinline statement to integrate the function body

directly into the calling code reduced this overhead and the
L performance gain was up to 10 percent of overall performance
E. Performance Optimizations In current implementation, some small code optimizations,
During the performance experiments we introduced severabucing readability but improving performance, were iear
optimization techniques and thus were able to significantbut in frequently used code sections.
reduce the CPU load of our implementation. The first op- These optimizations cut CPU load by half by incorporating
timization was to reduce data copying between processitige well-known principle of zero-copy and optimizing cexhtr
routines. When designing an object oriented implemematiacdata structures and frequently used code parts. As already
the tendency is to design every class with its own copy of tmeentioned in the above subsections, further optimizations



memory management and introduction of thread pooling ougbhiueh et al. [10] reported an empirical study of RSVP,

to contribute to more promising results. which measured performance of a Cisco RSVP-capable router,
including RSVP control packet latencies (under loaded and u
V. RELATED WORK loaded cases) and throughput impact delivered for QoS eobjec

Over the last decade, various issues for signaling in thiges. Paret al. [14], [33], [53] extensively studied processing
Internet, especially for QoS resource reservation, hawsn beperformance and scalability issues of RSVP and possible pro
widely investigated, They have ranged from soft state modébcol improvements. Karsteet al. [11] implemented a user-
ing [41], [42], scalability enhancements (e.g., by resgova level RSVP protocol engine (which allows multi-threading
aggregation and more efficient refreshes) [13], [43]-[46], processing) in Linux C++, evaluated its performance to find
complexity [14]-[16], [20] and applicability [46]-[48]. Aot out the upper limits of the reservation requests and profiled
of works have attempted to simplify or extend RSVP (evethe system for different parts of protocol operations.
under other protocol names). For example, today there are 44\fter we developed an open source CASP implementation
RFCs with the word “RSVP” in their titles, while the indexand evaluated its running properties [54], the present pape
of Internet drafts lists 16 documents with “RSVP” in theiklaborates the overhead study and performance results of th
titles. These works employed either a server-based or @roukvolved IETF GIST protocol through a detailed evaluation.
based approach. A server-based approach relies on ceetralifo our knowledge, the work presented in this paper is the first
entities (known as “bandwidth brokers”) to perform adnussi empirical study of the GIST protocol.
control, while the router-based approach installs packetsi
either on a per-flow or aggregated basis in a hop-by-hop way.
Although there has been much focus on modularity for specific
QoS or multicast models (e.g., [49]), generic signalingmsup
has acquired little focus. Furthermore, the dominant way of
using the Router Alert Option and coupling discovery with This paper presented the overhead, implementation and
discovery have lead to a number of security and complexigrformance study of GIST, a generic IP signaling protocol
problems [20], [50]. Derived from RSVP concepts, the Lab&eing developed by the IETF. In contrast to traditional meth
Distribution Protocol (LDP) [60] was standardized by thgd FE 0ds, GIST provides a modular architecture to support any
for distributing MPLS labels (later for several other siting a@pplication application (NSLP) requesting signaling &ess,
purposes), but it does not address the next signaling h@pd reduces complexity by relying on existing security and
discovery problem nor adequate security, leaving themHer ttransport protocols for achieving signaling functioriest The
administrators’s concern. modularity design of the GIST implementation provides a

Recently, several authors have addressed modular desfifixible way for state management, message processing, and
using either an RSVP-based or a CASP-based approachafy type of application-specific signaling purposes. Tiselte
RSVP-based approaches, RSVP has been extended usindf diproved extensibility, security, and transport praesrat
extra reliable mechanism [47] and general signaling suppdhe cost of additional overhead. The implementation peréat
This approach removes the QoS- and multicast-specific pgificiently when serving a number of sessions (at least &,00
cessing burden from the original RSVP, and has the advant@jél the profiling shows the detailed processing and round-
of better compatibility with existing protocol and impleme trip times for different numbers of signaling sessions. C-
tations. Nonetheless, issues concerning security, ctingesmode is concluded to be preferred to D-mode due to its
control and fragmentation of signaling messages may be méigher functionality despite slightly higher overheadidgrthe
complex. No simple solution is available and RSVP still las §€ssion setup.
deal with these issues, since RSVP encapsulates its messagéhe focus of this paper has been on GIST properties,
using raw IP or UDP, and couples PATH signaling with nextsuch as protocol overhead, scalability and other perfocman
hop discovery. Variations of the RSVP-based approach hassues. Composing signaling application protocols (NJLPs
been described in [22], [51]. The latter proposal suggestsaad its effect on overhead and performance will certainlsepo
decomposite system where a signaling message is just seritrtminent concerns once the overall system has materialized
next CASP hop (discovered by some next-hop discovery meathich will also effect its deployment. In addition, a numloér
anism) using an existing transport protocol which providassues were encountered when investigating the GIST prbtoc
capabilities such as fragmentation, congestion contnotl awhich went beyond the scope of this study. It is clear to
easier security when desired. Both proposals, howeverelesay that further study will be necessary with respect to a
the actual mechanism undefined. The present GIST designre sophisticated network topology, as well as the intemac
has followed many ideas of the CASP-based approach amiih underlying transport and security protocols (effeofs
reuse RSVP concepts wherever possible [25]. Nonethelemgplying IPsec/TLS and different TCP variants in particula
the tradeoff between performance, security, complexitgt aftn addition, studies are being carried out on other issues
modularity is still an issue in both approaches. Fault recgv connected with GIST/NSIS, such as mobility support [25],
especially in dealing with re-routing [52] remains one majd55], fault handling and route change, as well as the QoS
concern in the layered architecture. and NAT/Firewall NSLPs under standardization [28], [291da

These studies have been accompanied by some worksaooomprehensive performance evaluation of the whole NSIS
performance evaluation, in particular with RSVP. For exlmp protocol stack in comparison with RSVP.

VI. CONCLUSIONS

10



ACKNOWLEDGMENT

[21]

We would like to thank Bernd Schlor, Henning Peters ang,
Andreas Westermaier for their assistance in the implementa
tion, as well as Elwyn Davies, Cedric Aoun, Tseno Tseno[\é?)]
Fabian Meyer and Sebastian Willert for their contributioive
would also like to thank anonymous reviewers and members of
the IETF NSIS working group for the helpful comments, ant#4]
Martin Karsten for sharing his experience and kind support i
configuring and tuning KOM-RSVP.

(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]
El

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

D. Clark, “The Design Philosophy of the DARPA InternetoRycols,”
in Proc. of SGCOMM 1988, Stanford, CA, Aug. 1988.

R. Braden, D. D. Clark, and S. Shenker, “Integrated s@wiin
the Internet architecture: an overview,” Internet Engiimee Task
Force, RFC 1633, June 1994. [Online]. Available: http:/iwwic-
editor.org/rfc/rfc1633.txt

B. E. Carpenter and S. Brim, “Middleboxes: Taxonomy asdues,”
Internet Engineering Task Force, RFC 3234, Feb. 2002. f@nhli
Available: http://www.rfc-editor.org/rfc/rfc3234.txt

M. Blumenthal and D. Clark, “Rethinking the design of theternet:
The end to end arguments vs. the brave new woA@GM Transactions
on Internet Technology, vol. 1, no. 1, pp. 70-109, Aug. 2001.

J. Kempf and R. Austein, “The Rise of the Middle and the Uratof
End-to-End: Reflections on the Evolution of the Internet bAtecture,”
Internet Engineering Task Force, RFC 3724, Mar. 2004. f@hli
Available: http://www.rfc-editor.org/rfc/rfc3724.txt

L. Zhang, S. Deering, D. Estrin, S. Shen, and D. ZappaRSVP: A
New Resource ReSerVation ProtocdEEEE Network, vol. 7, no. 5, pp.
8-18, Sept. 1993.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamire- “R
source ReSerVation Protocol (RSVP) — Version 1 Functioragc®
fication,” RFC 2205, Sept. 1997. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2205.txt

J. Wroclawski, “The use of RSVP with IETF integrated sees,” Sept.
1997. [Online]. Available: http://www.rfc-editor.ordér/rfc2210.txt

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]
[35]

S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss, “An architecture for differentiated service,” tdmet
Engineering Task Force, RFC 2475, Dec. 1998. [Online]. latxde:
http://www.rfc-editor.org/rfc/rfc2475.txt

T. Chiueh, A. Neogi, and P. Stirpe, “Performance Analysf an RSVP-
Capable Router,” ifProc of IEEE RTAS 1998, pp. 39-48.

M. Karsten, J. Schmitt, and R. Steinmetz, “Implementatand Evalu-
ation of the KOM RSVP Engine,” iProc of IEEE INFOCOM, 2001,
pp. 1290-1299.

L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and 8lekdini,
“RSVP refresh overhead reduction extensions,” RFC 296k, 2@01.
[Online]. Available: http://www.rfc-editor.org/rfc/c2961.txt

P. Pan, E. Hahne, and H. Schulzrinne, “BGRP: A Tree-Bakggre-
gation Protocol for Inter-domain Reservationdgurnal of Communica-

tions and Networks, vol. 2, no. 2, pp. 157-167, June 2000.

P. Pan and H. Schulzrinne, “YESSIR: A Simple Reservatitechanism
for the Internet,” inProc of ACM NOSSDAV, 1998.

G. Feher, K. Nemeth, M. Maliosz, I. Cselenyi, J. BergityiD. Ahlard,
and T. Engborg, “Boomerang — A Simple Protocol for Resoureser
vation in IP Networks,” inProc of IEEE RTAS, 1999.

P. Chandra, A. Fisher, and P. Steenkiste, “A Signalingtdzol for
Structured Resource Allocation,” iRroc of IEEE INFOCOM, New
York, Mar. 1999.

A. Talukdar, B. Badrinath, and A. Acharya, “MRSVP: a Rese
Reservation Protocol for an Integrated Services Networth Wiobile
Hosts,” Wireless Networks, 7(1): 5-19, 2001.

S. Lee, A. Gahng-Seop, X. Zhang, and A. Campbell, “INSIS: An

IP-Based Quality of Service Framework for Mobile Ad Hoc Netks,”
Journal of Parallel and Distributed Computing, Special issue on Wireless
and Mobile Computing and Communications, 60(4): 374—406, 2000.

W.-T. Chen and L.-C. Huang, “RSVP Mobility Support: AgBaling
Protocol for Integrated Services Internet with Mobile Fgsin Proc of
IEEE INFOCOM 2000, Tel-Aviv, Israel, Mar. 2000.

J. Manner and X. Fu, “Analysis of Existing Quality-oef&ice Signaling
Protocols,” Internet Engineering Task Force, RFC 4094, \28¥5.
[Online]. Available: http://www.rfc-editor.org/rfc/c4094.txt

11

[36]
[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

The IETF Next Steps in Signaling (NSIS) Working Groug@njine].
Available: http://www.ietf.org/html.charters/nsisaner.html

B. Braden and B. Lindell, “A Two-Level Architecture fointernet
Signaling,” Internet draft (draft-braden-2level-signgt01), work in
progress, Oct. 2002.

H. Schulzrinne, H. Tschofenig, X. Fu, and A. McDonaldCASP —
Cross-Application Signaling Protocol,” Internet draftdtt-schulzrinne-
nsis-casp-01), work in progress, Mar. 2003.

X. Fu, H. Tschofenig, and D. Hogrefe, “Beyond QoS Sigmgl a
Generic IP Signaling Framework,” Computer Networks, 50(BA16-
3433, Dec. 2006.

H. Schulzrinne and R. Hancock, “GIST: General Inten$gnaling
Transport,” Internet draft (draft-ietf-nsis-ntlp-14)0ovk in progress, July
2007.

X. Fu, C. Dickmann, and J. Crowcroft, “General Interr&gnaling
Transport (GIST) over SCTP,” Internet draft (draft-ieffisyntlp-sctp-
01), work in progress, Mar. 2007.

R. Hancock, G. Karagiannis, J. Loughney, and S. Van descB,
“Next Steps in Signaling (NSIS): Framework,” Internet Emggring Task
Force, RFC 4080, June 2005.

J. Manner, G. Karagiannis, and A. McDonald, “NSLP for aty-of-
Service signaling,” Internet draft (draft-ietf-nsis-qaslp-15), work in
progress, July 2007.

M. Stiemerling, H. Tschofenig, C. Aoun, and E. DavieSIAT/Firewall
NSIS Signaling Layer Protocol (NSLP),” Internet draft (ithi@tf-nsis-
nslp-natfw-15), work in progress, July 2007.

D. D. Katz, “IP Router Alert Option,” Internet Enginéeg Task
Force, RFC 2113, Feb. 1997. [Online]. Available: http:/Amvic-
editor.org/rfc/rfc2113.txt

T. Tsenov, H. Tschofenig, X. Fu, C. Aoun, and E. Davigs|ST State
Machine,” Internet draft (draft-ietf-nsis-ntlp-statechéne-04), work in
progress, July 2007.

C. Aoun, E. Davies, and H. Tschofenig, “Securing Miduig
Discovery for Path-Directed Signaling in the Internet,”IEEE ASWN
2005 Workshop Proceedings, July 2005.

P. Pan and H. Schulzrinne, “Staged Refresh Timers fovilRSGlobal
Internet 1997.

L. Wang, A. Terzis, and L. Zhang, “A New Proposal for RSVP
Refreshes,” irProc of IEEE ICNP, Washington DC, 1999.

C. Dickmann, I. Juchem, S. Willert, and X. Fu, “A statdePing tool
for simple tests of GIST implementations,” Internet draftaft-juchem-
nsis-ping-tool-02), work in progress, July 2005.

NSIS Implementation. http://user.informatik.uraegtingen.detnsis
The eXtensible Open Router Platform (XORP). [Onlindjailable:
http://www.xorp.org/

P. Marques, “Kernel ISDN subsystem and device drivef@n-
line]. Available: http://kernel.org/publ/linux/kernpBople/marcelo/linux-
2.4/drivers/isdn/

Ethereal Dissector for GIST. [Online].
http://user.informatik.uni-goettingen.dehsis/release/ndiss/
G. Varghese and A. Lauck, “Hashed and hierarchical rignivheels:
Data structures for the efficient implementation of a timecilf
ity”, in Operating Systems Review, Special Issue: Proceedings of the
Eleventh Symposium on Operating Systems Principles, Austin, TX,
USA, 21(5):25-38, Nov. 1987

S. Raman and S. McCanne, “A model, analysis, and profoamework
for soft state-based communication,” firoc. of SGCOMM 1999.

P.Ji, Z. Ge, J. Kurose, and D. Towsley, “A Comparison afdHstate and
Soft-state Signaling Protocols,” iroc. of SGCOMM 2003, Karlsruhe,
Germany, Aug. 2003.

Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, Me&p R. Braden,
and B. S. Davie, “A framework for integrated services operabver
diffserv networks,” Internet Engineering Task Force, RFE®& Nov.
2000. [Online]. Available: http://www.rfc-editor.ordér/rfc2998.txt

F. Baker, C. lturralde, F. L. Faucheur, and B. Davie, ¢iggation
of RSVP for IPv4 and IPv6 reservations,” Internet Enginegrirask
Force, RFC 3175, Sept. 2001. [Online]. Available: httpatwrfc-
editor.org/rfc/rfc3175.txt

Z.-L. Zhang, Z. Duan, and Y. H. Hou, “Decoupling QoS Qumhtfrom
Core Routers: A Novel Bandwidth Broker Architecture for Bbde
Support of Guaranteed Services,” fnoc. of ACM S GCOMM, 2000.
A. Mankin, F. Baker, B. Braden, S. Bradner, M. O‘Dell, Romanow,
A. Weinrib, and L. Zhang, “Resource ReSerVation protocoSYR)
— version 1 applicability statement some guidelines on alepent,”
Internet Engineering Task Force, RFC 2208, Sept. 1997.ifejnl
Available: http://www.rfc-editor.org/rfc/rfc2208.txt

Available:



[47]

(48]

[49]

[50]

[51]
[52]
(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and &wallow,
“RSVP-TE: extensions to RSVP for LSP tunnels,” Dec. 200nlj@].
Available: http://www.rfc-editor.org/rfc/rfc3209.txt

A. Terzis, J. Krawczyk, J. Wroclawski, and L. Zhang, “®RS op-
eration over IP tunnels,” RFC 2746, Jan. 2000. [Online]. ilade:
http://www.rfc-editor.org/rfc/rfc2746.txt

D. Mitzel, D. Estrin, S. Shenker, and L. Zhang, “An ateltural
comparison of ST-Il and RSVP,” iRroc. of IEEE INFOCOM, 1994.
T-L. Wu, S. F. Wu, Z. Fu, H. Huang, and F.-M. Gong, “Sengr
QoS: Threats to RSVP messages and their countermeasurdrba.
of IWQoS, 1999.

M. Shore, “The NSIS Transport Layer Protocol (NTLP)jtérnet draft
(draft-shore-ntlp-00), work in progress, May 2003.

S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failuresensitive
routing for ensuring service availability,” iRroc. of IWQoS, 2003.

P. Pan and H. Schulzrinne, “Processing Overhead Studi€resource
Reservation Protocols,” ITC 2001.

X. Fu, D. Hogrefe, and S. Willert, “Implementation anddtation of
the Cross-Application Signaling Protocol (CASP),” Rroc. of IEEE
ICNP, Oct. 2004.

T. Sanda, X. Fu, S. Jeong, J. Manner, and H. Tschofeiigplicability
Statement of NSIS Protocols in Mobile Environments,” Intgr draft
(draft-ietf-nsis-applicability-mobility-signaling®), work in progress,
July 2007.

J. B. Postel, “Transmission Control Protocol,” InternEngineering
Task Force, RFC 793, Sept. 1981. [Online]. Available: Witpww.rfc-
editor.org/rfc/rfc793.txt

J. Touch, “TCP control block interdependence,” In&riEngineering
Task Force, RFC 2140, Apr. 1997. [Online]. Available: hftpww.rfc-
editor.org/rfc/rfc2140.txt

H. Balakrishnan and S. Seshan, “The Congestion Mariageernet
Engineering Task Force, RFC 3124, June 2001. [Online]. |Abba:
http://www.rfc-editor.org/rfc/rfc3124.txt

R. Braden and L. Zhang, “Resource ReSerVation Protd&s$VP)
— Version 1 Message Processing Rules,” Internet Engirgefiask
Force, RFC 2209, Sept. 1997. [Online]. Available: httpatwrfc-
editor.org/rfc/rfc2209.txt

L. Andersson, P. Doolan, N. Feldman, A. Fredette and Boriias,
“LDP Specification,” Internet Engineering Task Force, RFE36, Jan.
2001. [Online]. Available: http://www.rfc-editor.ordér/rfc3036.txt

X. Fu, H. Schulzrinne, H. Tschofenig, C. Dickmann and Hbgrefe,
“Overhead and Performance Study of the General InternetaSig
Transport (GIST) Protocol,” ifProc. of IEEE INFOCOM, 2006.

APPENDIX— SOURCES OFPROTOCOL OVERHEAD IN GIST

Here we give the details on how each of the layers

(IN COMPARISON WITHRSVP

MSS option (4 bytes) in addition to the normal TCP header,
thus their overall overhead is 24 bytes plus IP header. The
overhead of TCP ACK is 20 bytes plus IP header.

By default, RSVP messages are encapsulated directly using
IP, so normally there is no transport layer overhead in RSVP.
(Note the use of UDP for RSVP signaling is not discussed
here.)

3) GIST: The GIST layer overhead can differ from one
GIST message type to another, from one NSLP to another. It
also relies on the used lengths of query-cookie and response
cookie as well as peer identity (PI, part of the NLI — the net-
work layer information) and message routing method (MRM,
used for managing message routing state) [25]. In our work
we choose 36 bytes as the length for both query-cookie and
response-cookie objects. We use the peer’s IP address as the
PIl, thus a PI object length is 8 bytes (for IPv4) or 20 bytes
(for IPv6). Among the optional fields of a basic path-coupled
MRM, we choose to use only destination port (2 byte) for IPv4
and only flow label (3 bytes) for IPv6, which is suggested for
usage by some other protocols as well, e.g., [7], [23]. Ad th
mandatory fields are used in below discussions.

GIST-Query message comprises a common header (8 bytes),
an MRM object (24 bytes for IPv4, 52 bytes for IPv6), a
session ID object (20 bytes), a query-cookie object (369)yte
and a network layer information object (24 bytes for IPv4, 36
for IPv6). For a node desiring C-mode operation, the Queryin
node’s stack proposal object (12 bytes) and stack confiiguarat
data object (20 bytes) are also added. Therefore, the dveral
GIST layer overhead of a GIST-Query message is as follows:

8 4+ 24 + 20 + 36 + 24(+12 + 20) = 112(+32, if stack
proposal exists) bytes for IPv4, and

8 + 52 + 20 + 36 + 36(+12 + 20) = 152(+32, if stack
proposal exists) bytes for IPv6.

A GIST-Response message echos the query cookie and
stack proposal objects, and additionally adds a resportdeeco
object (36 bytes) to the received query message. Thus, the
alverall GIST layer overhead of a GIST-Response (C-mode) is

GIST and RSVP protocol structures contributes to theiraer 148 (+32 with stack proposal) bytes for IPv4 and 188 (+32
protocol overhead.
1) IP: Both RSVP and GIST messages need an IPv4 orA GIST-Confirm message differs from a GIST-Query in that
IPv6 header, which is 20 bytes or 40 bytes without options,contains a response cookie object instead of a query eooki
routing, fragmentation and security headers. For GISTrQuenbject (but of the same length), and removes the attachekl sta
and RSVP-Path messages, the IP layer requires additionaloffiguration data, besides the NSLP payload. Therefoee, th
bytes (for IPv4) or 8 bytes (for IPv6) in order to accommodataverall GIST layer overhead of a GIST-Confirm is the same
the IP Router Alert Option.
2) Transport Layer: GIST-Query messages are encapsu- A GIST-Data message comprises a common header, MRM,
lated using UDP, thus the transport layer overhead is 8 bytesssion ID and network layer information objects, exclgdin
Other GIST messages can use either D-mode (UDP) or BSLP payload. GIST-Data message overhead is then as fol-
mode (TCP by default), resulting in a default transport tayéows:
overhead of 8 bytes (UDP header) or 20 bytes (a minimal8 + 24 + 20 4+ 20 = 72 bytes for IPv4, and
TCP header). Note that C-mode messages in GIST required + 52 + 20 + 36 = 116 bytes for IPv6.
additional transport layer messages to accomplish thestran 4) RSVP: A minimal RSVP-Path message contains the
port functionality, such as connection setup and relighili IP layer (with overhead of 24 bytes for IPv4, 48 bytes for
Under normal circumstances (e.g., no loss, non-congested,|Pv6 including router alert option), common RSVP header
fragmentation), a TCP connection setup requires an additio (8 bytes), a session object (12 bytes for IPv4 and 24 bytes
TCP SYN, a SYN+ACK message and a TCP ACK messader |IPv6), TIME Values object (8 bytes) and a RS\HOP
whereas each GIST-layer message exchange needs an undebject (12 bytes for IPv4, 24 bytes for IPv6), in addition to
ing TCP ACK message. SYN or SYN+ACK messages carry dhe actually signaled data, namely the SENDERpec (12

with stack proposal) bytes for IPv6.

as Query.

12



bytes [8]). Therefore, a minimal RSVP-Path message regjuitgytes for IPv6), Sendefspec (12 bytes), previous hop’s IP
the following overhead for carry signaled data of 12 bytes: address (4 bytes for IPv4, 16 bytes for IPv6) and logical

24+ 8+ 12+ 12 + 8 = 64 bytes for IPv4, and interface handle (4 bytes), remaining IP TTL (1 byte), and

48 + 8 + 24 + 24 + 8 = 112 bytes for IPv6. several flags (assuming 1 byte), in total 38 bytes for IPv4

A minimal RSVP-Resv message for FF style (i.e., unicasihd 74 bytes for IPv6. A minimum RSB includes session (8
contains the IP header, common RSVP header, a sesdigtes for IPv4 and 20 bytes for IPv6), next hop IP address,
object, a RSVEHOP object, a STYLE object (8 bytes), andrilter_Spec (12 bytes for IPv4 and 24 bytes for IPv6), style (4
a Filter Spec object (of 12 bytes length for IPv4, or of 2dbytes), and FlowSpec (36 bytes for CLS), in total 64 bytes
bytes length for IPv6), in addition to the embedded sigmglirfor IPv4 and 90 bytes for IPv6. This represents 82 bhytes
data, i.e., a FlowSpec object (of 48 bytes length for G®r IPv4 and 164 bytes for IPv6 in overall RSB and PSB
the Guaranteed Service, or of 12 bytes length for CLS, tlecluding management overhead and timers. This conclusion
Controlled Load Service [8]). This indicates that a minimdi.e., slightly higher than GIST memory consumption) does
unicast RSVP-Resv message imposes the following overhewad appear surprising, since unlike GIST states, RSVP sstate
for carrying signaled data of 48 bytes (GS) or 12 bytes (CLS}Iso include IntServ parameters.

20+ 8+ 12+ 12+ 8+ 12 = 72 bytes for IPv4, and

20+ 8+ 24 + 24+ 8 + 24 = 108 bytes for IPv6.

5) Memory Consumption: Different from stateless proto-

.COIS (e.g., P and UDP)’_ TCP, GIST Iayer an_d RSVP. Iay%aoming Fu is currently Professor and Head of Computer Networks Group a
introduces memory requirements .'[0 store the" layer-$igecine University of Gottingen, Germany. He received his PiDBgree in Com-
states, besides their protocol engine repository. As tlaetexputer Science from the Tsinghua University, China in 2008.vrhs member

; ; search staff at Technical University Berlin, beforgdired the University
presentation of these states is not part of the standards %‘ﬁ(@bttingen as an Assistant Professor in 2002. His rebeaterests include

may differ from one implementation/computer architeCtere network architectures, protocols, mobile communicatiams service overlays.

another, we estimate them below and validate them in tlngthese areas he has contributed to EU-funded projects EABaidalos-
; ; 2 II, MING-T, and VIDIOS etc. He has served as TPC member/sesshair for
evaluation (See Section 1V C)' . . . various networking conferences such as INFOCOM/ICNP/ISBEIZW, and
In the TCP layer, each TCP connection maintains a datac co-chair of the ACM International Workshop on Mobilitythe Evolving

structure for its state (TCP Control Block or TCB) [56], whic Internet Architecture (MobiArch) 2006-2007. Email: fu@asi-goettingen.de
includes a combination of parameters, such as connection

state, current round-trip time estimates, congestion robnt

information, and process information. A TCB connectiornesta

Can_ vary in size between 256 byt_es or less and more thrgepnning Schulzrinne received his Ph.D. from the University of Mas-
1 kilobytes. In GIST, TCP connections are recommended dgchusetts in Amherst, Massachusetts. He was a memberhofidek staff
be shared across signaling sessions between the same GIST&T Bell Laboratories, Murray Hill and an associate depeent head

: GMD-Fokus (Berlin), before joining the Computer Sciercel Electrical
pairs, where TCP Control Block Interdependence (TCBI) [5 ngineering departments at Columbia University, New Yotk. is currently

or Congestion Manager [58] may be used in order to reduggyessor and Chair of the Department of Computer Sciena#odls co-
connection state size, e.g., up to 512 bytes. Use of such nmgveloped by him, such as RTP, RTSP and SIP, are now Intetaredzsds,

; ; ; : used by almost all Internet telephony and multimedia appbos. His
tiplexing techniques allows a rather low memory Consurmptlc?esearch interests include Internet multimedia systefnguitous computing,

for per-peer GIST state management. mobile systems, quality of service, and performance etialuaHe is a Fellow
The GIST layer in D-mode maintains a per-session staté the IEEE. Email: hgs@cs.columbia.edu

namely the message routing state. A minimum MRS state

entry contains MRI (e.g., 1-byte method identifier for “path

coupled”, and 10-byte 5-tuple flow ID for IPv4 or 35-bytes

3-tuple flow ID for l_PVG comprising flow label, ﬂO_W Sender,sHannes Tschofenigreceived his Diploma degree from the University of

address, flow receiver’s address), 16-byte session ID,t&-byiagenfurt, Austria. He joined Siemens Corporate Techgylin 2001 and is

NSLP ID, response direction (e.g., flow sender’s addresscufrently a senior research scientist at Nokia Siemens dt&twvand part-
. . ime researcher at the University of Gottingen. His redeanterests lie
bytes for IPv4 and 16 bytes for IPVG) and query dlrecnon'(e'é)n network architectures, protocols, applications andteel security issues.

flow receiver’s address). This indicates that such an MRE/enke is currently co-chair of the IETF Emergency Context Rafimh with

is 36 bytes (|PV4) or 85 bytes (IPV6) in size, in addition to kternet Teqhnologies (ECRIT) working group and Diameteaifienance
validity timer and Extensions (DIME) working group, as well as Secretarythef Next

o . . Steps in Signaling (NSIS) working group. He is a co-authorseferal
In addition to the per-session state MRS (same as in Blandard track RFCs and Internet drafts. He has contribiteBU funded

mode), GIST layer in C-mode also maintains a per-peer stifejects, such as SHAMAN, Ambient Networks and ENABLE. Emai
MA, which includes the GIST messages pending transmissigHmes-tschofenig@nsn.com
(the number can be zero) and MA active timer, which is rather
small in size when serving for a number of MRS sessions.
In contrast, each RSVP node maintains a per-session Path
State Block (PSB) and a Resv State Block (RSB) [59], eaciristian Dickmann received his bachelor's degree (with honors) in Com-

with a validity timer and refresh interval. A minimum PSBpPuter Science in 2005 and is working towards his master'segegt the
iversity of Gottingen. He was an intern at BMW Car IT anér8ens AG.

includes information about session (8 bytes for IPv4 and #62007, he was a visiting research scholar at Columbia Wsiiye New York.
bytes for IPv6), Sendefemplate (8 bytes for IPv4 and 20Email: cdickman@cs.uni-goettingen.de

13



Dieter Hogrefe received his Diploma degree and Ph.D. from the University
of Hannover, Germany. His research activities are diretiedirds Computer
Networks and Protocol Engineering. In these fields he hafighell several
books and numerous papers on Internet technology, anagisisilation and
testing of formally specified communication systems. Aftears of research
positions in Siemens, he held professorships at the Uiitiezr®f Dortmund,
Berne and Luebeck. Since 2002 he is Professor for Telematitke Uni-
versity of Gottingen. Prof. Hogrefe represents the I[ITBa(fhhofer Institute
for Information and Data Processing) in the European Tefeoanication
Standards Institute, ETSI, where he is chairman of the Tieah@ommittee
Methods for Testing and Specification. Email: hogrefe @usgoettingen.de

14



